Previous |  Up |  Next

Article

Title: A general homogenization result of spectral problem for linearized elasticity in perforated domains (English)
Author: Ait Yahia, Mohamed Mourad Lhannafi
Author: Haddadou, Hamid
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 5
Year: 2021
Pages: 701-724
Summary lang: English
.
Category: math
.
Summary: The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the $H^0$-convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor $A^0$, the $H^0$-limit of $A^{\varepsilon }$, is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar's method of test functions, and some general arguments of spectral analysis used in the literature on the homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a simple eigenvalue of the homogenized problem. We conclude our work by some comments and perspectives. (English)
Keyword: homogenization
Keyword: $H$-convergence
Keyword: perforated domain
Keyword: linear elasticity
Keyword: eigenvalue problem
MSC: 35B27
MSC: 35B40
MSC: 47A75
MSC: 74B05
idZBL: 07396174
idMR: MR4299881
DOI: 10.21136/AM.2021.0009-20
.
Date available: 2021-08-18T08:29:57Z
Last updated: 2023-11-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149079
.
Reference: [1] Briane, M.: Homogenization in general periodically perforated domains by a spectral approach.Calc. Var. Partial Differ. Equ. 15 (2002), 1-24. Zbl 1028.35018, MR 1920712, 10.1007/s005260100115
Reference: [2] Briane, M., Damlamian, A., Donato, P.: $H$-convergence in perforated domains.Nonlinear Partial Differential Equations and Their Applications Pitman Research Notes in Mathematics Series 391. Longman, Harlow (1998), 62-100. Zbl 0943.35005, MR 1773075
Reference: [3] Cancedda, A.: Spectral homogenization for a Robin-Neumann problem.Boll. Unione Mat. Ital. 10 (2017), 199-222. Zbl 1377.35092, MR 3655025, 10.1007/s40574-016-0075-z
Reference: [4] Cioranescu, D., Paulin, J. Saint Jean: Homogenization of Reticuled Structures.Applied Mathematical Sciences 136. Springer, New York (1999). Zbl 0929.35002, MR 1676922, 10.1007/978-1-4612-2158-6
Reference: [5] Damlamian, A., Donato, P.: Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?.ESAIM, Control Optim. Calc. Var. 8 (2002), 555-585. Zbl 1073.35020, MR 1932963, 10.1051/cocv:2002046
Reference: [6] Douanla, H.: Homogenization of Steklov spectral problems with indefinite density function in perforated domains.Acta Appl. Math. 123 (2013), 261-284. Zbl 1263.35022, MR 3010234, 10.1007/s10440-012-9765-4
Reference: [7] Hajji, M. El: Homogenization of linearized elasticity systems with traction condition in perforated domains.Electron. J. Differ. Equ. 1999 (1999), Article ID 41, 11 pages. Zbl 0952.74060, MR 1713600
Reference: [8] Hajji, M. El, Donato, P.: $H^0$-convergence for the linearized elasticity system.Asymptotic Anal. 21 (1999), 161-186. Zbl 0942.74057, MR 1723547
Reference: [9] Francfort, G. A., Murat, F.: Homogenization and optimal bounds in linear elasticity.Arch. Ration. Mech. Anal. 94 (1986), 307-334. Zbl 0604.73013, MR 0846892, 10.1007/BF00280908
Reference: [10] Georgelin, C.: Contribution à l'étude de quelques problèmes en élasticité tridimensionnelle: Thèse de Doctorat.Université de Paris IV, Paris (1989), French.
Reference: [11] Haddadou, H.: Iterated homogenization for the linearized elasticity by $H^{0}_{e}$-convergence.Ric. Mat. 54 (2005), 137-163. Zbl 1387.35034, MR 2290210
Reference: [12] Haddadou, H.: A property of the $H$-convergence for elasticity in perforated domains.Electron. J. Differ. Equ. 137 (2006), Article ID 137, 11 pages. Zbl 1128.35017, MR 2276562
Reference: [13] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer, Berlin (1994). Zbl 0838.35001, MR 1329546, 10.1007/978-3-642-84659-5
Reference: [14] Kesavan, S.: Homogenization of elliptic eigenvalue problems I.Appl. Math. Optim. 5 (1979), 153-167. Zbl 0415.35061, MR 0533617, 10.1007/BF01442551
Reference: [15] Léné, F.: Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement.C. R. Acad. Sci., Paris, Sér. A 286 (1978), 75-78 French. Zbl 0372.73001, MR 0486458
Reference: [16] Murat, F., Tartar, L.: $H$-convergence.Topics in the Mathematical Modelling of Composite Materials Progress in Nonlinear Differential Equations and Their Applications 31. Birkhäuser, Boston (1997), 21-43. Zbl 0920.35019, MR 1493039, 10.1007/978-1-4612-2032-9_3
Reference: [17] Nandakumar, A. K.: Homogenization of eigenvalue problems of elasticity in perforated domains.Asymptotic Anal. 9 (1994), 337-358. Zbl 0814.35135, MR 1301169, 10.3233/ASY-1994-9403
Reference: [18] Oleinik, O. A., Shamaev, A. S., Yosifian, G. A.: Mathematical Problems in Elasticity and Homogenization.Studies in Mathematics and Its Applications 26. North-Holland, Amsterdam (1992). Zbl 0768.73003, MR 1195131, 10.1016/s0168-2024(08)x7009-2
Reference: [19] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. Zbl 0174.42101, MR 0240443
Reference: [20] Suslina, T. A.: Spectral approach to homogenization of elliptic operators in a perforated space.Rev. Math. Phys. 30 (2018), Article ID 1840016, 57 pages. Zbl 1411.35029, MR 3846431, 10.1142/S0129055X18400160
Reference: [21] Tartar, L.: Problèmes d'homogénéisation dans les équations aux dérivées partielles.Cours Peccot, Collège de France, Paris (1977), French.
Reference: [22] Tartar, L.: The General Theory of Homogenization: A Personalized Introduction.Lecture Notes of the Unione Matematica Italiana 7. Springer, Berlin (2009). Zbl 1188.35004, MR 2582099, 10.1007/978-3-642-05195-1
Reference: [23] Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains.Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 239-271. Zbl 0486.35063, MR 0635561, 10.1007/BF02838079
.

Files

Files Size Format View
AplMat_66-2021-5_3.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo