Previous |  Up |  Next

Article

Title: An instantaneous semi-Lagrangian approach for boundary control of a melting problem (English)
Author: Mezzan, Youness
Author: Tber, Moulay Hicham
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 5
Year: 2021
Pages: 725-744
Summary lang: English
.
Category: math
.
Summary: In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples. (English)
Keyword: free boundary problem
Keyword: sub-optimal boundary control
Keyword: characteristics method
Keyword: complementarity constraint
Keyword: penalization-regularization
MSC: 35R35
MSC: 49K20
MSC: 65M25
MSC: 90C33
idZBL: 07396175
idMR: MR4299882
DOI: 10.21136/AM.2021.0028-20
.
Date available: 2021-08-18T08:30:30Z
Last updated: 2023-11-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149080
.
Reference: [1] Abdulla, U. G.: On the optimal control of the free boundary problems for the second order parabolic equations. I: Well-posedness and convergence of the method of lines.Inverse Probl. Imaging 7 (2013), 307-340. Zbl 1267.35247, MR 3063536, 10.3934/ipi.2013.7.307
Reference: [2] Abdulla, U. G.: On the optimal control of the free boundary problems for the second order parabolic equations. II: Convergence of the method of finite differences.Inverse Probl. Imaging 10 (2016), 869-898. Zbl 1348.35305, MR 3610744, 10.3934/ipi.2016025
Reference: [3] Abdulla, U. G., Goldfarb, J. M.: Frechet differentability in Besov spaces in the optimal control of parabolic free boundary problems.J. Inverse Ill-Posed Probl. 26 (2018), 211-227. Zbl 1390.35409, MR 3778603, 10.1515/jiip-2017-0014
Reference: [4] Abdulla, U. G., Poggi, B.: Optimal Stefan problem.Calc. Var. Partial Differ. Equ. 59 (2020), Article ID 61, 40 pages. Zbl 1439.35553, MR 4073207, 10.1007/s00526-020-1712-z
Reference: [5] Al-Saadi, S. N., Zhai, Z. J.: Modeling phase change materials embedded in building enclosure: A review.Renew. Sust. Energy Rev. 21 (2013), 659-673. 10.1016/j.rser.2013.01.024
Reference: [6] Baran, B., Benner, P., Heiland, J., Saak, J.: Optimal control of a Stefan problem fully coupled with incompressible Navier-Stokes equations and mesh movement.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 26 (2018), 11-40. Zbl 1438.49050, MR 3841350, 10.2478/auom-2018-0016
Reference: [7] Bernauer, M. K., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation.SIAM J. Sci. Comput. 33 (2011), 342-363. Zbl 1241.80013, MR 2783198, 10.1137/100783327
Reference: [8] Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows.Appl. Numer. Math. 31 (1999), 133-158. Zbl 0939.76027, MR 1708955, 10.1016/S0168-9274(98)00131-7
Reference: [9] Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation.J. Fluid Mech. 253 (1993), 509-543. Zbl 0810.76012, MR 1233904, 10.1017/S0022112093001880
Reference: [10] Dhir, V. K.: Phase change heat transfer---a perspective for the future.Proceedings of Rohsenow Symposium on Future Trends in Heat Transfer Massachusetts Institute of Technology, Cambridge (2003), 6 pages Available at http://web.mit.edu/hmtl/www/papers/DHIR.pdf.
Reference: [11] Esen, A., Kutluay, S.: A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method.Appl. Math. Comput. 148 (2004), 321-329. Zbl 1034.65070, MR 2015374, 10.1016/S0096-3003(02)00846-9
Reference: [12] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845, 10.1090/gsm/019
Reference: [13] Gol'dman, N. L.: Inverse Stefan Problems.Mathematics and Its Applications 412. Kluwer Academic Publishers, Dordrecht (1997). Zbl 0899.35123, MR 1463692, 10.1007/978-94-011-5488-8
Reference: [14] Hintermüller, M., Laurain, A., Löbhard, C., Rautenberg, C. N., Surowiec, T. M.: Elliptic mathematical programs with equilibrium constraints in function space: Optimality conditions and numerical realization.Trends in PDE Constrained Optimization International Series of Numerical Mathematics 165. Springer, Cham (2014), 133-153. Zbl 1327.49037, MR 3328974, 10.1007/978-3-319-05083-6_9
Reference: [15] Hintermüller, M., Löbhard, C., Tber, M. H.: An $\ell_1$-penalty scheme for the optimal control of elliptic variational inequalities.Numerical Analysis and Optimization Springer Proceedings in Mathematics & Statistics 134. Springer, Cham (2015), 151-190. Zbl 1330.65101, MR 3446846, 10.1007/978-3-319-17689-5_7
Reference: [16] Hinze, M., Ziegenbalg, S.: Optimal control of the free boundary in a two-phase Stefan problem.J. Comput. Phys. 223 (2007), 657-684. Zbl 1115.80008, MR 2319228, 10.1016/j.jcp.2006.09.030
Reference: [17] Hinze, M., Ziegenbalg, S.: Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection.ZAMM, Z. Angew. Math. Mech. 87 (2007), 430-448. Zbl 1123.49029, MR 2333667, 10.1002/zamm.200610326
Reference: [18] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Pure and Applied Mathematics 88. Academic Press, New York (1980). Zbl 0457.35001, MR 0567696, 10.1137/1.9780898719451
Reference: [19] Pironneau, O.: On the transport-diffusion algorithm and its applications to the NavierStokes equations.Numer. Math. 38 (1982), 309-332. Zbl 0505.76100, MR 0654100, 10.1007/BF01396435
Reference: [20] Pironneau, O., Huberson, S.: Characteristic-Galerkin and the particle method for the convection-diffusion equation and the Navier-Stokes equations.Lectures in Applied Mathematics 28. Vortex Dynamics and Vortex Methods American Mathematical Society, Providence (1991), 547-565. Zbl 0751.76047, MR 1146484
Reference: [21] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications.Graduate Studies in Mathematics 112. American Mathematical Society, Providence (2010). Zbl 1195.49001, MR 2583281, 10.1090/gsm/112
Reference: [22] Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces.Appl. Math. Optim. 5 (1979), 49-62. Zbl 0401.90104, MR 0526427, 10.1007/BF01442543
.

Files

Files Size Format View
AplMat_66-2021-5_4.pdf 823.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo