Previous |  Up |  Next

Article

Title: On lower bounds for the variance of functions of random variables (English)
Author: Goodarzi, Faranak
Author: Amini, Mohammad
Author: Mohtashami Borzadaran, Gholam Reza
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 5
Year: 2021
Pages: 767-788
Summary lang: English
.
Category: math
.
Summary: In this paper, we obtain lower bounds for the variance of a function of random variables in terms of measures of reliability and entropy. Also based on the obtained characterization via the lower bounds for the variance of a function of random variable $X$, we find a characterization of the weighted function corresponding to density function $f(x)$, in terms of Chernoff-type inequalities. Subsequently, we obtain monotonic relationships between variance residual life and dynamic cumulative residual entropy and between variance past lifetime and dynamic cumulative past entropy. Moreover, we find lower bounds for the variance of functions of weighted random variables with specific weight functions applicable in reliability under suitable conditions. (English)
Keyword: variance bound
Keyword: Chernoff inequality
Keyword: size-biased distribution
Keyword: reliability measure
Keyword: dynamic cumulative residual entropy
Keyword: dynamic cumulative past entropy
MSC: 60E15
idZBL: 07396177
idMR: MR4299884
DOI: 10.21136/AM.2021.0042-20
.
Date available: 2021-08-18T08:31:48Z
Last updated: 2023-11-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149082
.
Reference: [1] Asadi, M., Zohrevand, Y.: On the dynamic cumulative residual entropy.J. Stat. Plann. Inference 137 (2007), 1931-1941. Zbl 1118.62006, MR 2323874, 10.1016/j.jspi.2006.06.035
Reference: [2] Cacoullos, T.: On upper and lower bounds for the variance of the function of a random variable.Ann. Probab. 10 (1982), 799-809. Zbl 0492.60021, MR 0659549, 10.1214/aop/1176993788
Reference: [3] Cacoullos, T., Papathanasiou, V.: On upper bounds for the variance of functions of random variables.Stat. Probab. Lett. 3 (1985), 175-184. Zbl 0572.60021, MR 0801687, 10.1016/0167-7152(85)90014-8
Reference: [4] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by variance bounds.Stat. Probab. Lett. 7 (1989), 351-356. Zbl 0677.62012, MR 1001133, 10.1016/0167-7152(89)90050-3
Reference: [5] Cacoullos, T., Papathanasiou, V.: A generalization of covariance identity and related characterization.Math. Methods Stat. 4 (1995), 106-113. Zbl 0831.62013, MR 1324694
Reference: [6] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by generalizations of variance bounds and simple proofs of the CLT.J. Stat. Plann. Inference 63 (1997), 157-171. Zbl 0922.62009, MR 1491576, 10.1016/S0378-3758(97)00008-6
Reference: [7] Chen, L. H. Y.: An inequality for the multivariate normal distribution.J. Multivariate Anal. 12 (1982), 306-315. Zbl 0483.60011, MR 0661566, 10.1016/0047-259X(82)90022-7
Reference: [8] Chernoff, H.: A note on an inequality involving the normal distribution.Ann. Probab. 9 (1981), 533-535. Zbl 0457.60014, MR 0614640, 10.1214/aop/1176994428
Reference: [9] Crescenzo, A. Di, Paolillo, L.: Analysis and applications of the residual varentropy of random lifetimes.(to appear) in Probab. Eng. Inf. Sci. MR 4276539, 10.1017/S0269964820000133
Reference: [10] Fisher, R. A.: The effects of methods of ascertainment upon the estimation of frequencies.Ann. Eugenics 6 (1934), 13-25. 10.1111/j.1469-1809.1934.tb02105.x
Reference: [11] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: On upper bounds for the variance of functions of random variables with weighted distributions.Lobachevskii J. Math. 37 (2016), 422-435. Zbl 1347.62030, MR 3528019, 10.1134/S1995080216040089
Reference: [12] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: Characterizations of continuous distributions through inequalities involving the expected values of selected functions.Appl. Math., Praha 62 (2017), 493-507. Zbl 06819518, MR 3722901, 10.21136/AM.2017.0182-16
Reference: [13] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: Some results on upper bounds for the variance of functions of the residual life random variables.J. Comput. Appl. Math. 320 (2017), 30-42. Zbl 1368.60021, MR 3624716, 10.1016/j.cam.2017.01.001
Reference: [14] Borzadaran, G. R. Mohtashami: A note on continuous exponential families.Thai J. Math. 8 (2010), 555-563. Zbl 1229.62011, MR 2763677
Reference: [15] Borzadaran, G. R. Mohtashami, Shanbhag, D. N.: Further results based on Chernoff-type inequalities.Stat. Probab. Lett. 39 (1998), 109-117. Zbl 1094.62503, MR 1652512, 10.1016/S0167-7152(98)00036-4
Reference: [16] Nair, N. U., Sudheesh, K. K.: Characterization of continuous distributions by variance bound and its implications to reliability modeling and catastrophe theory.Commun. Stat., Theory Methods 35 (2006), 1189-1199. Zbl 1105.62016, MR 2328470, 10.1080/03610920600629443
Reference: [17] Nair, N. U., Sudheesh, K. K.: Characterization of continuous distributions by properties of conditional variance.Stat. Methodol. 7 (2010), 30-40. Zbl 1232.62038, MR 2744442, 10.1016/j.stamet.2009.08.003
Reference: [18] Nanda, A. K., Singh, H., Misra, N., Paul, P.: Reliability properties of reversed residual lifetime.Commun. Stat., Theory Methods 32 (2003), 2031-2042. Zbl 1156.62360, MR 2002004, 10.1081/STA-120023264
Reference: [19] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015
Reference: [20] Psarrakos, G., Navarro, J.: Generalized cumulative residual entropy and record values.Metrika 76 (2013), 623-640. Zbl 1307.62011, MR 3078811, 10.1007/s00184-012-0408-6
Reference: [21] Rao, C. R.: On discrete distributions arising out of methods of ascertainment.Classical and Contagious Discrete Distributions Statistical Publishing Society, Calcutta (1965), 320-332. Zbl 0212.21903, MR 0214205
Reference: [22] Rao, M., Chen, Y., Vemuri, B. C., Wang, F.: Cumulative residual entropy: A new measure of information.IEEE Trans. Inf. Theory 50 (2004), 1220-1228. Zbl 1302.94025, MR 2094878, 10.1109/TIT.2004.828057
Reference: [23] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics. Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5
.

Files

Files Size Format View
AplMat_66-2021-5_6.pdf 296.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo