Previous |  Up |  Next

Article

Title: A new energy conservative scheme for regularized long wave equation (English)
Author: Luo, Yuesheng
Author: Xing, Ruixue
Author: Li, Xiaole
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 5
Year: 2021
Pages: 745-765
Summary lang: English
.
Category: math
.
Summary: An energy conservative scheme is proposed for the regularized long wave (RLW) equation. The integral method with variational limit is used to discretize the spatial derivative and the finite difference method is used to discretize the time derivative. The energy conservation of the scheme and existence of the numerical solution are proved. The convergence of the order $O(h^2 + \tau ^2)$ and unconditional stability are also derived. Numerical examples are carried out to verify the correctness of the theoretical analysis. (English)
Keyword: regularized long wave equation
Keyword: integral method with variational limit
Keyword: finite difference method
Keyword: Lagrange interpolation
Keyword: energy conservation scheme
MSC: 65M06
MSC: 65M12
idZBL: 07396176
idMR: MR4299883
DOI: 10.21136/AM.2021.0066-20
.
Date available: 2021-08-18T08:31:11Z
Last updated: 2023-11-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149081
.
Reference: [1] Brango, C. Banquet: The symmetric regularized-long-wave equation: Well-posedness and nonlinear stability.Physica D 241 (2012), 125-133. Zbl 1252.35130, 10.1016/j.physd.2011.10.007
Reference: [2] Bhardwaj, D., Shankar, R.: A computational method for regularized long wave equation.Comput. Math. Appl. 40 (2000), 1397-1404. Zbl 0965.65108, MR 1803919, 10.1016/S0898-1221(00)00248-0
Reference: [3] Bhowmik, S. K., Karakoc, S. B. G.: Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method.Numer. Methods Partial Differ. Equations 35 (2019), 2236-2257. Zbl 1431.65169, MR 4022940, 10.1002/num.22410
Reference: [4] Cai, J.: Multisymplectic numerical method for the regularized long-wave equation.Comput. Phys. Commun. 180 (2009), 1821-1831. Zbl 1197.65144, MR 2678455, 10.1016/j.cpc.2009.05.009
Reference: [5] Chegini, N. G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines.Nonlinear Dyn. 69 (2012), 459-471. Zbl 1258.65076, MR 2929885, 10.1007/s11071-011-0277-y
Reference: [6] Chertovskih, R., Chian, A. C.-L., Podvigina, O., Rempel, E. L., Zheligovsky, V.: Existence, uniqueness, and analyticity of space-periodic solutions to the regularized long-wave equation.Adv. Differ. Equ. 19 (2014), 725-754. Zbl 1292.35227, MR 3252900
Reference: [7] Dogan, A.: Numerical solution of RLW equation using linear finite elements within Galerkin's method.Appl. Math. Modelling 26 (2002), 771-783. Zbl 1016.76046, 10.1016/S0307-904X(01)00084-1
Reference: [8] Eilbeck, J. C., McGuire, G. R.: Numerical study of the regularized long-wave equation. I: Numerical methods.J. Comput. Phys. 19 (1975), 43-57. Zbl 0325.65054, MR 0400907, 10.1016/0021-9991(75)90115-1
Reference: [9] Fang, S., Guo, B., Qiu, H.: The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations.Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 61-68. Zbl 1221.35362, MR 2458711, 10.1016/j.cnsns.2007.07.001
Reference: [10] Gardner, L. R. T., Gardner, G. A., Dag, I.: A $B$-spline finite element method for the regularized long wave equation.Commun. Numer. Methods Eng. 11 (1995), 59-68. Zbl 0819.65125, MR 1312879, 10.1002/cnm.1640110109
Reference: [11] Guo, L., Chen, H.: $H^1$-Galerkin mixed finite element method for the regularized long wave equation.Computing 77 (2006), 205-221. Zbl 1098.65096, MR 2214448, 10.1007/s00607-005-0158-7
Reference: [12] Guo, B., Shang, Y.: Approximate inertial manifolds to the generalized symmetric regularized long wave equations with damping term.Acta Math. Appl. Sin., Engl. Ser. 19 (2003), 191-204. Zbl 1059.35105, MR 2011482, 10.1007/s10255-003-0095-1
Reference: [13] Hammad, D. A., El-Azab, M. S.: Chebyshev-Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation.Appl. Math. Comput. 285 (2016), 228-240. Zbl 1410.65395, MR 3494425, 10.1016/j.amc.2016.03.033
Reference: [14] Hu, J., Zheng, K.: Two conservative difference schemes for the generalized Rosenau equation.Bound. Value Probl. 2010 (2010), Article ID 543503, 18 pages. Zbl 1187.65090, MR 2600713, 10.1155/2010/543503
Reference: [15] Irk, D., Keskin, P.: Quadratic trigonometric $B$-spline Galerkin methods for the regularized long wave equation.J. Appl. Anal. Comput. 7 (2017), 617-631. MR 3602441, 10.11948/2017038
Reference: [16] Irk, D., Yildiz, P. Keskin, Görgülü, M. Zorşahin: Quartic trigonometric $B$-spline algorithm for numerical solution of the regularized long wave equation.Turk. J. Math. 43 (2019), 112-125. Zbl 1417.65172, MR 3909279, 10.3906/mat-1804-55
Reference: [17] Karakoc, S. B. G., Yagmurlu, N. M., Ucar, Y.: Numerical approximation to a solution of the modified regularized long wave equation using quintic $B$-splines.Bound. Value Probl. 2013 (2013), Article ID 27, 17 pages. Zbl 1284.65142, MR 3110753, 10.1186/1687-2770-2013-27
Reference: [18] Kumar, R., Baskar, S.: $B$-spline quasi-interpolation based numerical methods for some Sobolev type equations.J. Comput. Appl. Math. 292 (2016), 41-66. Zbl 1329.65236, MR 3392380, 10.1016/j.cam.2015.06.015
Reference: [19] Lin, B.: A nonpolynomial spline scheme for the generalized regularized long wave equation.Stud. Appl. Math. 132 (2014), 160-182. Zbl 1291.65302, MR 3167092, 10.1111/sapm.12022
Reference: [20] Lin, B.: Parametric spline solution of the regularized long wave equation.Appl. Math. Comput. 243 (2014), 358-367. Zbl 1336.65176, MR 3244483, 10.1016/j.amc.2014.05.133
Reference: [21] Lin, B.: Non-polynomial splines method for numerical solutions of the regularized long wave equation.Int. J. Comput. Math. 92 (2015), 1591-1607. Zbl 1317.65054, MR 3340634, 10.1080/00207160.2014.950254
Reference: [22] Luo, Y., Li, X., Guo, C.: Fourth-order compact and energy conservative scheme for solving nonlinear Klein-Gordon equation.Numer. Methods Partial Differ. Equations 33 (2017), 1283-1304. Zbl 1377.65119, MR 3652187, 10.1002/num.22143
Reference: [23] Oruç, Ö., Bulut, F., Esen, A.: Numerical solutions of regularized long wave equation by Haar wavelet method.Mediterr. J. Math. 13 (2016), 3235-3253. Zbl 1354.65194, MR 3554305, 10.1007/s00009-016-0682-z
Reference: [24] Peregrine, D. H.: Calculations of the development of an undular bore.J. Fluid Mech. 25 (1966), 321-330. 10.1017/S0022112066001678
Reference: [25] Peregrine, D. H.: Long waves on a beach.J. Fluid Mech. 27 (1967), 815-827. Zbl 0163.21105, 10.1017/S0022112067002605
Reference: [26] Pindza, E., Maré, E.: Solving the generalized regularized long wave equation using a distributed approximating functional method.Int. J. Comput. Math. 2014 (2014), Article ID 178024, 12 pages. 10.1155/2014/178024
Reference: [27] Raslan, K. R.: A computational method for the regularized long wave (RLW) equation.Appl. Math. Comput. 167 (2005), 1101-1118. Zbl 1082.65582, MR 2169754, 10.1016/j.amc.2004.06.130
Reference: [28] Rouatbi, A., Achouri, T., Omrani, K.: High-order conservative difference scheme for a model of nonlinear dispersive equations.Comput. Appl. Math. 37 (2018), 4169-4195. Zbl 1402.65090, MR 3848530, 10.1007/s40314-017-0567-1
Reference: [29] Salih, H., Tawfiq, L. N. M., Yahya, Z. R., Zin, S. Mat: Solving modified regularized long wave equation using collocation method.J. Phys., Conf. Ser. 1003 (2018), Article ID 012062, 9 pages. 10.1088/1742-6596/1003/1/012062
Reference: [30] Shang, Y., Guo, B.: Exponential attractor for the generalized symmetric regularized long wave equation with damping term.Appl. Math. Mech., Engl. Ed. 26 (2005), 283-291. Zbl 1144.76304, MR 2132120, 10.1007/BF02440077
Reference: [31] Shao, X., Xue, G., Li, C.: A conservative weighted finite difference scheme for regularized long wave equation.Appl. Math. Comput. 219 (2013), 9202-9209. Zbl 1288.65125, MR 3047814, 10.1016/j.amc.2013.03.068
Reference: [32] Soliman, A. A.: Numerical scheme based on similarity reductions for the regularized long wave equation.Int. J. Comput. Math. 81 (2004), 1281-1288. Zbl 1063.65086, MR 2173459, 10.1080/00207160412331272135
Reference: [33] Wang, B., Sun, T., Liang, D.: The conservative and fourth-order compact finite difference schemes for regularized long wave equation.J. Comput. Appl. Math. 356 (2019), 98-117. Zbl 1419.65033, MR 3915392, 10.1016/j.cam.2019.01.036
Reference: [34] Xie, S., Kim, S., Woo, G., Yi, S.: A numerical method for the generalized regularized long wave equation using a reproducing kernel function.SIAM J. Sci. Comput. 30 (2008), 2263-2285. Zbl 1181.65125, MR 2429465, 10.1137/070683623
Reference: [35] Yan, J., Lai, M.-C., Li, Z., Zhang, Z.: New conservative finite volume element schemes for the modified regularized long wave equation.Adv. Appl. Math. Mech. 9 (2017), 250-271. MR 3598526, 10.4208/aamm.2014.m888
Reference: [36] Zhang, L.: A finite difference scheme for generalized regularized long-wave equation.Appl. Math. Comput. 168 (2005), 962-972. Zbl 1080.65079, MR 2171754, 10.1016/j.amc.2004.09.027
Reference: [37] Zheng, K., Hu, J.: High-order conservative Crank-Nicolson scheme for regularized long wave equation.Adv. Difference Equ. 2013 (2013), Article ID 287, 12 pages. Zbl 1444.65051, MR 3337283, 10.1186/1687-1847-2013-287
Reference: [38] Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method.International Academic Publishers, Beijing (1991). Zbl 0732.65080, MR 1133399
.

Files

Files Size Format View
AplMat_66-2021-5_5.pdf 306.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo