Title:
|
Fuzzy differential subordinations connected with the linear operator (English) |
Author:
|
El-Deeb, Sheza M. |
Author:
|
Oros, Georgia I. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
397-406 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties. (English) |
Keyword:
|
fuzzy differential subordination |
Keyword:
|
fuzzy best dominant |
Keyword:
|
linear operator |
MSC:
|
30C45 |
idZBL:
|
Zbl 07442509 |
idMR:
|
MR4336546 |
DOI:
|
10.21136/MB.2020.0159-19 |
. |
Date available:
|
2021-11-08T16:18:50Z |
Last updated:
|
2021-12-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149256 |
. |
Reference:
|
[1] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator.Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436. Zbl 1072.30009, MR 2085011, 10.1155/S0161171204108090 |
Reference:
|
[2] Lupaş, A. Alb: On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative.J. Comput. Anal. Appl. 15 (2013), 1484-1489. Zbl 1290.30013, MR 3075680 |
Reference:
|
[3] Lupaş, A. Alb, Oros, G.: On special fuzzy differerential subordinations using Sălăgean and Ruscheweyh operators.Appl. Math. Comput. 261 (2015), 119-127. Zbl 1410.30011, MR 3345263, 10.1016/j.amc.2015.03.087 |
Reference:
|
[4] Aouf, M. K.: Some inclusion relationships associated with the Komatu integral operator.Math. Comput. Modelling 50 (2009), 1360-1366. Zbl 1185.30011, MR 2583425, 10.1016/j.mcm.2008.10.023 |
Reference:
|
[5] Aouf, M. K.: The Komatu integral operator and strongly close-to-convex functions.Bull. Math. Anal. Appl. 3 (2011), 209-219. Zbl 1314.30017, MR 2955361 |
Reference:
|
[6] Bernardi, S. D.: Convex and starlike univalent functions.Trans. Am. Math. Soc. 135 (1969), 429-446. Zbl 0172.09703, MR 232920, 10.1090/S0002-9947-1969-0232920-2 |
Reference:
|
[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results.House of Scientic Book Publ., Cluj-Napoca (2005). |
Reference:
|
[8] Ebadian, A., Najafzadeh, S.: Uniformly starlike and convex univalent functions by using certain integral operators.Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. Zbl 1224.30046, MR 2656769 |
Reference:
|
[9] El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M.: Differential subordination for certain subclasses of $p$-valent functions associated with generalized linear operator.J. Math. 2013 (2013), Article ID 692045, 8 pages. Zbl 1268.30011, MR 3100736, 10.1155/2013/692045 |
Reference:
|
[10] Gal, S. G., Ban, A. I.: Elemente de Matematica Fuzzy.University of Oradea, Oradea (1996), Romanian. |
Reference:
|
[11] Khairnar, S. M., More, M.: On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator.IAENG, Int. J. Appl. Math. 39 (2009), 175-183. Zbl 1229.30008, MR 2554929 |
Reference:
|
[12] Komatu, Y.: On analytic prolongation of a family of integral operators.Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. Zbl 0753.30005, MR 1159903 |
Reference:
|
[13] Miller, S. S., Mocanu, P. T.: Differential Subordination: Theory and Applications.Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York (2000). Zbl 0954.34003, MR 1760285, 10.1201/9781482289817 |
Reference:
|
[14] Oros, G. I., Oros, G.: The notation of subordination in fuzzy sets theory.Gen. Math. 19 (2011), 97-103. Zbl 1265.03050, MR 2879082 |
Reference:
|
[15] Oros, G. I., Oros, G.: Dominants and best dominants in fuzzy differential subordinations.Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. Zbl 1274.30059, MR 2974592 |
Reference:
|
[16] Oros, G. I., Oros, G.: Fuzzy differential subordination.Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. Zbl 1289.30155, MR 3025317 |
Reference:
|
[17] Raina, R. K., Bapna, I. B.: On the starlikeness and convexity of a certain integral operator.Southeast Asian Bull. Math. 33 (2009), 101-108. Zbl 1212.30066, MR 2481938 |
Reference:
|
[18] Sălăgean, G. S.: Subclasses of univalent functions.Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. Zbl 0531.30009, MR 738107, 10.1007/BFb0066543 |
. |