Previous |  Up |  Next

Article

Title: Fuzzy differential subordinations connected with the linear operator (English)
Author: El-Deeb, Sheza M.
Author: Oros, Georgia I.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 4
Year: 2021
Pages: 397-406
Summary lang: English
.
Category: math
.
Summary: We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties. (English)
Keyword: fuzzy differential subordination
Keyword: fuzzy best dominant
Keyword: linear operator
MSC: 30C45
idZBL: Zbl 07442509
idMR: MR4336546
DOI: 10.21136/MB.2020.0159-19
.
Date available: 2021-11-08T16:18:50Z
Last updated: 2021-12-29
Stable URL: http://hdl.handle.net/10338.dmlcz/149256
.
Reference: [1] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator.Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436. Zbl 1072.30009, MR 2085011, 10.1155/S0161171204108090
Reference: [2] Lupaş, A. Alb: On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative.J. Comput. Anal. Appl. 15 (2013), 1484-1489. Zbl 1290.30013, MR 3075680
Reference: [3] Lupaş, A. Alb, Oros, G.: On special fuzzy differerential subordinations using Sălăgean and Ruscheweyh operators.Appl. Math. Comput. 261 (2015), 119-127. Zbl 1410.30011, MR 3345263, 10.1016/j.amc.2015.03.087
Reference: [4] Aouf, M. K.: Some inclusion relationships associated with the Komatu integral operator.Math. Comput. Modelling 50 (2009), 1360-1366. Zbl 1185.30011, MR 2583425, 10.1016/j.mcm.2008.10.023
Reference: [5] Aouf, M. K.: The Komatu integral operator and strongly close-to-convex functions.Bull. Math. Anal. Appl. 3 (2011), 209-219. Zbl 1314.30017, MR 2955361
Reference: [6] Bernardi, S. D.: Convex and starlike univalent functions.Trans. Am. Math. Soc. 135 (1969), 429-446. Zbl 0172.09703, MR 232920, 10.1090/S0002-9947-1969-0232920-2
Reference: [7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results.House of Scientic Book Publ., Cluj-Napoca (2005).
Reference: [8] Ebadian, A., Najafzadeh, S.: Uniformly starlike and convex univalent functions by using certain integral operators.Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. Zbl 1224.30046, MR 2656769
Reference: [9] El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M.: Differential subordination for certain subclasses of $p$-valent functions associated with generalized linear operator.J. Math. 2013 (2013), Article ID 692045, 8 pages. Zbl 1268.30011, MR 3100736, 10.1155/2013/692045
Reference: [10] Gal, S. G., Ban, A. I.: Elemente de Matematica Fuzzy.University of Oradea, Oradea (1996), Romanian.
Reference: [11] Khairnar, S. M., More, M.: On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator.IAENG, Int. J. Appl. Math. 39 (2009), 175-183. Zbl 1229.30008, MR 2554929
Reference: [12] Komatu, Y.: On analytic prolongation of a family of integral operators.Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. Zbl 0753.30005, MR 1159903
Reference: [13] Miller, S. S., Mocanu, P. T.: Differential Subordination: Theory and Applications.Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York (2000). Zbl 0954.34003, MR 1760285, 10.1201/9781482289817
Reference: [14] Oros, G. I., Oros, G.: The notation of subordination in fuzzy sets theory.Gen. Math. 19 (2011), 97-103. Zbl 1265.03050, MR 2879082
Reference: [15] Oros, G. I., Oros, G.: Dominants and best dominants in fuzzy differential subordinations.Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. Zbl 1274.30059, MR 2974592
Reference: [16] Oros, G. I., Oros, G.: Fuzzy differential subordination.Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. Zbl 1289.30155, MR 3025317
Reference: [17] Raina, R. K., Bapna, I. B.: On the starlikeness and convexity of a certain integral operator.Southeast Asian Bull. Math. 33 (2009), 101-108. Zbl 1212.30066, MR 2481938
Reference: [18] Sălăgean, G. S.: Subclasses of univalent functions.Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. Zbl 0531.30009, MR 738107, 10.1007/BFb0066543
.

Files

Files Size Format View
MathBohem_146-2021-4_2.pdf 225.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo