Previous |  Up |  Next

Article

Title: Some properties of state filters in state residuated lattices (English)
Author: Kondo, Michiro
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 4
Year: 2021
Pages: 375-395
Summary lang: English
.
Category: math
.
Summary: We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin {itemize} \item [(1)] $F$ is obstinate $\Leftrightarrow $ $L/F \cong \{0,1\}$; \item [(2)] $F$ is primary $\Leftrightarrow $ $L/F$ is a state local residuated lattice; \end {itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda } \}$, where $P_{\lambda }$ is a prime state filter of $X$. \endgraf Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered. (English)
Keyword: obstinate state filter
Keyword: prime state filter
Keyword: Boolean state filter
Keyword: primary state filter
Keyword: state filter
Keyword: residuated lattice
Keyword: local residuated lattice
MSC: 03B47
MSC: 06B10
idZBL: Zbl 07442508
idMR: MR4336545
DOI: 10.21136/MB.2020.0040-19
.
Date available: 2021-11-08T16:18:04Z
Last updated: 2021-12-29
Stable URL: http://hdl.handle.net/10338.dmlcz/149254
.
Reference: [1] Ciungu, L. C.: Bosbach and Riečan states on residuated lattices.J. Appl. Funct. Anal. 3 (2008), 175-188. Zbl 1170.03030, MR 2369429
Reference: [2] Constantinescu, N. M.: On pseudo BL-algebras with internal state.Soft Comput. 16 (2012), 1915-1922. Zbl 1291.03116, 10.1007/s00500-012-0864-y
Reference: [3] Constantinescu, N. M.: State filters on fuzzy structures with internal states.Soft Comput. 18 (2014), 1841-1852. Zbl 1331.03043, 10.1007/s00500-014-1277-x
Reference: [4] Dvurečenskij, A.: States on pseudo MV-algebras.Stud. Log. 68 (2001), 301-327. Zbl 0999.06011, MR 1865858, 10.1023/A:1012490620450
Reference: [5] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded non-commutative R$\ell$-monoids.Math. Slovaca 56 (2006), 487-500. Zbl 1141.06005, MR 2293582
Reference: [6] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded R$\ell$-monoids.Semigroup Forum 72 (2006), 190-206. Zbl 1105.06010, MR 2216089, 10.1007/s00233-005-0545-6
Reference: [7] Dvurečenskij, A., Rachůnek, J., Šalounová, D.: State operators on generalizations of fuzzy structures.Fuzzy Sets Syst. 187 (2012), 58-76. Zbl 1266.03071, MR 2851996, 10.1016/j.fss.2011.05.023
Reference: [8] Flaminio, T., Montagna, F.: MV-algebras with internal states and probabilistic fuzzy logics.Int. J. Approx. Reasoning 50 (2009), 138-152. Zbl 1185.06007, MR 2519034, 10.1016/j.ijar.2008.07.006
Reference: [9] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Studies in Logic and the Foundations of Mathematics 151. Elsevier, Amsterdam (2007). Zbl 1171.03001, MR 2531579, 10.1016/S0049-237X(07)80005-X
Reference: [10] Georgescu, G.: Bosbach states on fuzzy structures.Soft Comput. 8 (2004), 217-230. Zbl 1081.06012, 10.1007/s00500-003-0266-2
Reference: [11] Hájek, P.: Metamathematics of Fuzzy Logic.Trends in Logic--Studia Logica Library 4. Kluwer, Dordrecht (1998). Zbl 0937.03030, MR 1900263, 10.1007/978-94-011-5300-3
Reference: [12] Hart, J. B., Rafter, L., Tsinakis, C.: The structure of commutative residuated lattices.Int. J. Algebra Comput. 12 (2002), 509-524. Zbl 1011.06006, MR 1919685, 10.1142/S0218196702001048
Reference: [13] Haveshki, M., Saeid, A. Borumand, Eslami, E.: Some types of filters in BL algebras.Soft Comput. 10 (2006), 657-664. Zbl 1103.03062, 10.1007/s00500-005-0534-4
Reference: [14] Haveshki, M., Mohamadhasani, M.: Extended filters in bounded commutative R$\ell$-monoids.Soft Comput. 16 (2012), 2165-2173. Zbl 1288.03043, 10.1007/s00500-012-0884-7
Reference: [15] He, P., Xin, X., Yang, Y.: On state residuated lattices.Soft Comput. 19 (2015), 2083-2094. Zbl 1364.06003, 10.1007/s00500-015-1620-x
Reference: [16] Kondo, M.: Characterization of extended filters in residuated lattices.Soft Comput. 18 (2014), 427-432. Zbl 1386.03073, 10.1007/s00500-013-1100-0
Reference: [17] Kondo, M.: States on bounded commutative residuated lattices.Math. Slovaca 64 (2014), 1093-1104. Zbl 1342.06009, MR 3277839, 10.2478/s12175-014-0261-3
Reference: [18] Kondo, M.: Generalized state operators on residuated lattices.Soft Comput. 21 (2017), 6063-6071. Zbl 1384.03119, 10.1007/s00500-016-2324-6
Reference: [19] Kondo, M., Kawaguchi, M. F.: Some properties of generalized state operators on residuated lattices.Proceedings of the 46th IEEE International Symposium on Multiple-Valued Logic IEEE Computer Society, Los Alamitos (2016), 162-166. MR 3570629, 10.1109/ISMVL.2016.29
Reference: [20] Kondo, M., Watari, O., Kawaguchi, M. F., Miyakoshi, M.: A Logic Determined by Commutative Residuated Lattices.New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Volume 2 (2007), Universitas Ostraviensis, Ostrava (2007), 45-48.
Reference: [21] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [22] Rachůnek, J., Šalounová, D.: State operators on GMV-algebras.Soft Comput. 15 (2011), 327-334. Zbl 1260.06014, 10.1007/s00500-010-0568-0
Reference: [23] Turunen, E.: Boolean deductive systems of BL-algebras.Arch. Math. Logic 40 (2001), 467-473. Zbl 1030.03048, MR 1854896, 10.1007/s001530100088
Reference: [24] Ward, M., Dilworth, R. P.: Residuated lattices.Trans. Am. Math. Soc. 45 (1939), 335-354. Zbl 0021.10801, MR 1501995, 10.1090/S0002-9947-1939-1501995-3
.

Files

Files Size Format View
MathBohem_146-2021-4_1.pdf 294.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo