Title:
|
Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales (English) |
Author:
|
Danielsson, Tatiana |
Author:
|
Johnsen, Pernilla |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
483-511 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems. (English) |
Keyword:
|
homogenization |
Keyword:
|
parabolic problem |
Keyword:
|
multiscale convergence |
Keyword:
|
very weak multiscale convergence |
Keyword:
|
two-scale convergence |
MSC:
|
35B27 |
MSC:
|
35K20 |
idZBL:
|
Zbl 07442515 |
idMR:
|
MR4336552 |
DOI:
|
10.21136/MB.2021.0087-19 |
. |
Date available:
|
2021-11-08T16:22:12Z |
Last updated:
|
2021-12-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149262 |
. |
Reference:
|
[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757 |
Reference:
|
[2] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. Zbl 1205.35019, MR 2646529, 10.1007/s11565-010-0095-z |
Reference:
|
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). Zbl 0404.35001, MR 0503330, 10.1016/s0168-2024(08)x7015-8 |
Reference:
|
[4] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity.Available at https://arxiv.org/abs/1809.11019 (2018), 14 pages. |
Reference:
|
[5] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity.Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. 10.1007/978-3-030-27550-1_43 |
Reference:
|
[6] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media.Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. Zbl 1336.35046, MR 3414107 |
Reference:
|
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales.J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. Zbl 1242.35030, MR 2875184, 10.1155/2012/643458 |
Reference:
|
[8] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence.Appl. Math. Lett. 23 (2010), 1170-1173. Zbl 1198.35023, MR 2665589, 10.1016/j.aml.2010.05.005 |
Reference:
|
[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales.Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. Zbl 1293.35027, MR 3111807, 10.1155/2013/329704 |
Reference:
|
[10] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time.J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. Zbl 1406.35140, MR 3176810, 10.1155/2014/101685 |
Reference:
|
[11] Holmbom, A.: Homogenization of parabolic equations: An alternative approach and some corrector-type results.Appl. Math., Praha 42 (1997), 321-343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047 |
Reference:
|
[12] Johnsen, P., Lobkova, T.: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales.Appl. Math., Praha 63 (2018), 503-521. Zbl 06986923, MR 3870146, 10.21136/AM.2018.0350-17 |
Reference:
|
[13] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains.Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. Zbl 1416.35032, MR 3950176, 10.1007/s10255-019-0810-1 |
Reference:
|
[14] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819 |
Reference:
|
[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference:
|
[16] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics.SIAM J. Math. Anal. 21 (1990), 1394-1414. Zbl 0723.73011, MR 1075584, 10.1137/0521078 |
Reference:
|
[17] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035 |
Reference:
|
[18] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales.Appl. Math., Praha 57 (2012), 191-214. Zbl 1265.35018, MR 2984600, 10.1007/s10492-012-0013-z |
Reference:
|
[19] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis.Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012). |
Reference:
|
[20] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms.Appl. Anal. 92 (2013), 1357-1378. Zbl 1271.35006, MR 3169106, 10.1080/00036811.2012.678334 |
Reference:
|
[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0 |
. |