Previous |  Up |  Next

Article

Title: Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ (English)
Author: Pérez-Hernández, Julio
Author: Pineda-Ruelas, Mario
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 4
Year: 2021
Pages: 471-481
Summary lang: English
.
Category: math
.
Summary: If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_{K}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals. (English)
Keyword: ramification
Keyword: cyclic quartic field
Keyword: discriminant
Keyword: index
MSC: 11R16
MSC: 11S15
idZBL: Zbl 07442514
idMR: MR4336551
DOI: 10.21136/MB.2021.0131-19
.
Date available: 2021-11-08T16:21:35Z
Last updated: 2021-12-29
Stable URL: http://hdl.handle.net/10338.dmlcz/149261
.
Reference: [1] Alaca, Ş., Spearman, B. K., Williams, K. S.: The factorization of 2 in cubic fields with index 2.Far East J. Math. Sci. (FJMS) 14 (2004), 273-282. Zbl 1080.11079, MR 2108046
Reference: [2] Alaca, Ş., Williams, K. S.: Introductory Algebraic Number Theory.Cambridge University Press, Cambridge (2004). Zbl 1035.11001, MR 2031707, 10.1017/cbo9780511791260
Reference: [3] Cohen, H.: A Course in Computational Algebraic Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9
Reference: [4] Conrad, K.: Factoring after Dedekind.Available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf 7 pages.
Reference: [5] Driver, E., Leonard, P. A., Williams, K. S.: Irreducible quartic polynomials with factorizations modulo $p$.Am. Math. Mon. 112 (2005), 876-890. Zbl 1211.11037, MR 2186831, 10.2307/30037628
Reference: [6] Engstrom, H. T.: On the common index divisors of an algebraic field.Trans. Am. Math. Soc. 32 (1930), 223-237 \99999JFM99999 56.0885.04. MR 1501535, 10.1090/S0002-9947-1930-1501535-0
Reference: [7] Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideals decomposition in number fields.J. Théor. Nombres Bordx. 23 (2011), 667-696. Zbl 1266.11131, MR 2861080, 10.5802/jtnb.782
Reference: [8] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory.Trans. Am. Math. Soc. 364 (2012), 361-416. Zbl 1252.11091, MR 2833586, 10.1090/S0002-9947-2011-05442-5
Reference: [9] Hardy, K., Hudson, R. H., Richman, D., Williams, K. S., Holtz, N. M.: Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields.Carleton-Ottawa Mathematical Lecture Note Series 7. Carleton University, Ottawa (1986). Zbl 0615.12009
Reference: [10] Hudson, R. H., Williams, K. S.: The integers of a cyclic quartic field.Rocky Mt. J. Math. 20 (1990), 145-150. Zbl 0707.11078, MR 1057983, 10.1216/rmjm/1181073167
Reference: [11] Kappe, L.-C., Warren, B.: An elementary test for the Galois group of a quartic polynomial.Am. Math. Mon. 96 (1989), 133-137. Zbl 0702.11075, MR 0992075, 10.2307/2323198
Reference: [12] Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cubic field.Proc. Am. Math. Soc. 87 (1983), 579-585. Zbl 0514.12003, MR 0687621, 10.1090/S0002-9939-1983-0687621-6
Reference: [13] Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas: Dissertation Ph.D.Universitat de Barcelona, Barcelona (1999), Spanish.
Reference: [14] Spearman, B. K., Williams, K. S.: The index of a cyclic quartic field.Monatsh. Math. 140 (2003), 19-70. Zbl 1049.11111, MR 2007140, 10.1007/s00605-002-0547-3
.

Files

Files Size Format View
MathBohem_146-2021-4_7.pdf 229.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo