Previous |  Up |  Next


aggregation functions; invariantness; homogeneity; quasi-homogeneity
Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones.
[1] Aczél, J.: Lectures on Functional Equations and their Applications. Acad. Press, New York 1966. MR 0208210
[2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006. MR 2222258
[3] Dujmovic, J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158. DOI  | MR 0378884
[4] Ebanks, B. R.: Quasi-homogeneous associative functions. Int. J. Math. Math. Sci. 21 (1998), 351-358. DOI 10.1155/S0161171298000489 | MR 1609715
[5] Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Economic Theory 56 (2014), 1, 33-58. DOI  | MR 3190759
[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, New York 2009. MR 2538324 | Zbl 1206.68299
[7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[8] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E., Rocha, M.: An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355-356 (2016), 328-347. DOI 
[9] Nelsen, R. E.: An Introduction to Copulas. Second edition. Springer, New York 2006. MR 2197664
[10] Mayor, G., Mesiar, R., Torrens, J.: On quasi-homogeneous copulas. Kybernetika 44 (2008), 6, 745-755. DOI  | MR 2488902
[11] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. DOI  | MR 3021836 | Zbl 1267.28018
[12] Mesiar, R., Rückschlossová, T.: Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63-73. DOI  | MR 2045343
[13] Rückschlossová, T., Rückschloss, R.: Homogeneous aggregation operators. Kybernetika 42(3) (2006), 279-286. MR 2253389
[14] Xie, A., Su, Y., Liu, H.: On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems 287 (2016), 203-212. DOI  | MR 3447027
[15] Su, Y., Zong, W., Mesiar, R.: Characterization of homogeneous and quasi-homogeneous binary aggregation functions. Fuzzy Sets and Systems, in press. DOI 
Partner of
EuDML logo