Previous |  Up |  Next

Article

Title: The direct and inverse problem for sub-diffusion equations with a generalized impedance subregion (English)
Author: Harris, Isaac
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 1
Year: 2022
Pages: 1-20
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the direct and inverse problem for time-fractional diffusion in a domain with an impenetrable subregion. Here we assume that on the boundary of the subregion the solution satisfies a generalized impedance boundary condition. This boundary condition is given by a second order spatial differential operator imposed on the boundary. A generalized impedance boundary condition can be used to model corrosion and delimitation. The well-posedness for the direct problem is established where the Laplace transform is used to study the time dependent boundary value problem. The inverse impedance problem of determining the parameters from the Cauchy data is also studied provided the boundary of the subregion is known. The uniqueness of recovering the boundary parameters from the Neumann to Dirichlet mapping is proven. (English)
Keyword: fractional diffusion
Keyword: Laplace transform
Keyword: inverse impedance problem
MSC: 35R11
MSC: 35R30
idZBL: Zbl 07478514
idMR: MR4392402
DOI: 10.21136/AM.2021.0107-20
.
Date available: 2022-02-08T10:46:53Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/149354
.
Reference: [1] Boukari, Y., Haddar, H.: A convergent data completion algorithm using surface integral equations.Inverse Probl. 31 (2015), Article ID 035011, 21 pages. Zbl 1314.35023, MR 3319377, 10.1088/0266-5611/31/3/035011
Reference: [2] Brown, T. S., Du, S., Eruslu, H., Sayas, F.-J.: Analysis of models for viscoelastic wave propagation.Appl. Math. Nonlinear Sci. 3 (2018), 55-96. MR 3893319, 10.21042/AMNS.2018.1.00006
Reference: [3] Cakoni, F., Teresa, I. de, Haddar, H., Monk, P.: Nondestructive testing of the delaminated interface between two materials.SIAM J. Appl. Math. 76 (2016), 2306-2332. Zbl 1362.35328, MR 3576580, 10.1137/16M1064167
Reference: [4] Cakoni, F., Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition.Inverse Probl. 29 (2013), Article ID 015005, 19 pages. Zbl 1302.65146, MR 3003012, 10.1088/0266-5611/29/1/015005
Reference: [5] Monk, F. Cakoni P., Selgas, V.: Analysis of the linear sampling method for imaging penetrable obstacles in the time domain.Anal. PDE 14 (2021), 667-688. Zbl 7365578, MR 4259870, 10.2140/apde.2021.14.667
Reference: [6] Calderón, A.-P.: On an inverse boundary value problem.Seminar on Numerical Analysis and Its Applications to Continuum Physics Soc. Brasil. Mat., Rio de Janeiro (1980), 65-73. MR 0590275
Reference: [7] Chaabane, S., Charfi, B., Haddar, H.: Reconstruction of discontinuous parameters in a second order impedance boundary operator.Inverse Probl. 32 (2016), Article ID 105004, 22 pages. Zbl 1354.65230, MR 3627028, 10.1088/0266-5611/32/10/105004
Reference: [8] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019
Reference: [9] Guo, J., Nakamura, G., Wang, H.: The factorization method for recovering cavities in a heat conductor.Available at https://arxiv.org/abs/1912.11590 (2019), 15 pages.
Reference: [10] Haddar, H., Lechleiter, A., Marmorat, S.: An improved time domain linear sampling method for Robin and Neumann obstacles.Appl. Anal. 93 (2014), 369-390. Zbl 1290.35169, MR 3169211, 10.1080/00036811.2013.772583
Reference: [11] Harris, I.: Detecting an inclusion with a generalized impedance condition from electrostatic data via sampling.Math. Methods Appl. Sci. 42 (2019), 6741-6756. Zbl 1437.35177, MR 4037932, 10.1002/mma.5777
Reference: [12] Harris, I.: A direct method for reconstructing inclusions and boundary conditions from electrostatic data.To appear in Appl. Anal. (2021), 19 pages. 10.1080/00036811.2021.1991326
Reference: [13] Ismailov, M. I., Çiçek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions.Appl. Math. Modelling 40 (2016), 4891-4899. Zbl 1459.35395, MR 3478250, 10.1016/j.apm.2015.12.020
Reference: [14] Jin, B., Rundell, W.: A tutorial on inverse problems for anomalous diffusion processes.Inverse Probl. 31 (2015), Article ID 035003, 40 pages. Zbl 1323.34027, MR 3311557, 10.1088/0266-5611/31/3/035003
Reference: [15] Kaltenbacher, B., Rundell, W.: On an inverse potential problem for a fractional reaction-diffusion equation.Inverse Probl. 35 (2019), Article ID 065004, 31 pages. Zbl 1461.35233, MR 3975371, 10.1088/1361-6420/ab109e
Reference: [16] Kaltenbacher, B., Rundell, W.: Regularization of a backwards parabolic equation by fractional operators.Inverse Probl. Imaging 13 (2019), 401-430. Zbl 1410.35285, MR 3925425, 10.3934/ipi.2019020
Reference: [17] Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems.Oxford Lecture Series in Mathematics and Its Applications 36. Oxford University Press, Oxford (2008). Zbl 1222.35001, MR 2378253, 10.1093/acprof:oso/9780199213535.001.0001
Reference: [18] Mueller, J. F., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications.Computational Science & Engineering 10. SIAM, Philadelphia (2012). Zbl 1262.65124, MR 2986262, 10.1137/1.9781611972344
Reference: [19] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022, 10.1016/s0076-5392(99)x8001-5
Reference: [20] Qiu, T., Rieder, A., Sayas, F.-J., Zhang, S.: Time-domain boundary integral equation modeling of heat transmission problems.Numer. Math. 143 (2019), 223-259. Zbl 1428.65102, MR 3987172, 10.1007/s00211-019-01040-y
Reference: [21] Salsa, S.: Partial Differential Equations in Action: From Modelling to Theory.Universitext. Springer, Berlin (2008). Zbl 1146.35001, MR 2399851, 10.1007/978-88-470-0752-9
Reference: [22] Sayas, F.-J.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map.Springer Series in Computational Mathematics 50. Springer, Cham (2016). Zbl 1346.65047, MR 3468871, 10.1007/978-3-319-26645-9
Reference: [23] Thach, T. N., Huy, T. N., Tam, P. T. M., Minh, M. N., Can, N. H.: Identification of an inverse source problem for time-fractional diffusion equation with random noise.Math. Methods Appl. Sci. 42 (2019), 204-218. Zbl 1407.35093, MR 3905782, 10.1002/mma.5334
.

Files

Files Size Format View
AplMat_67-2022-1_1.pdf 301.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo