Previous |  Up |  Next

Article

Title: Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping (English)
Author: Hong, Gimyong
Author: Hong, Hakho
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 1
Year: 2022
Pages: 21-47
Summary lang: English
.
Category: math
.
Summary: We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation. (English)
Keyword: transmission problem
Keyword: Kirchhoff plate
Keyword: Kelvin-Voigt damping
Keyword: energy decay
Keyword: Carleman estimate
MSC: 35L57
MSC: 35Q74
MSC: 74K20
MSC: 74M05
MSC: 93D15
idZBL: Zbl 07478515
idMR: MR4392403
DOI: 10.21136/AM.2021.0104-20
.
Date available: 2022-02-08T10:47:34Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/149357
.
Reference: [1] Ammari, K., Jellouli, M., Mehrenberger, M.: Feedback stabilization of a coupled stringbeam system.Netw. Heterog. Media 4 (2009), 19-34. Zbl 1183.93109, MR 2480421, 10.3934/nhm.2009.4.19
Reference: [2] Ammari, K., Nicaise, S.: Stabilization of a transmission wave/plate equation.J. Differ. Equations 249 (2010), 707-727. Zbl 1201.35128, MR 2646047, 10.1016/j.jde.2010.03.007
Reference: [3] Ammari, K., Vodev, G.: Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation.Cubo 11 (2009), 39-49. Zbl 1184.35045, MR 2568250
Reference: [4] Avalos, G., Lasiecka, I., Triggiani, R.: Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate.J. Math. Anal. Appl. 437 (2016), 782-815. Zbl 1336.35054, MR 3456199, 10.1016/j.jmaa.2015.12.051
Reference: [5] Avalos, G., Triggiani, R.: Backward uniqueness of the s.c. semigroup arising in parabolichyperbolic fluid-structure interaction.J. Differ. Equations 245 (2008), 737-761. Zbl 1158.35300, MR 2422526, 10.1016/j.jde.2007.10.036
Reference: [6] Avalos, G., Triggiani, R.: Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface.Discrete Contin. Dyn. Syst. 22 (2008), 817-833. Zbl 1158.35320, MR 2434971, 10.3934/dcds.2008.22.817
Reference: [7] Avalos, G., Triggiani, R.: Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability.Evol. Equ. Control Theory 2 (2013), 563-598. Zbl 1277.35045, MR 3177244, 10.3934/eect.2013.2.563
Reference: [8] Avalos, G., Triggiani, R.: Rational decay rates for a PDE heat-structure interaction: A frequency domain approach.Evol. Equ. Control Theory 2 (2013), 233-253. Zbl 1275.35035, MR 3089718, 10.3934/eect.2013.2.233
Reference: [9] Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model.Fluids and Waves: Recent Trends in Applied Analysis Contemporary Mathematics 440. American Mathematical Society, Providence (2007), 55-82. Zbl 1297.35234, MR 2359449, 10.1090/conm/440
Reference: [10] Bastos, W. D., Raposo, C. A.: Transmission problem for waves with frictional damping.Electron. J. Differ. Equ. 2007 (2007), Article ID 60, 10 pages. Zbl 1136.35315, MR 2299614
Reference: [11] Batty, C. J. K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces.J. Evol. Equ. 8 (2008), 765-780. Zbl 1185.47043, MR 2460938, 10.1007/s00028-008-0424-1
Reference: [12] Bellassoued, M.: Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization.Asymptotic. Anal. 35 (2003), 257-279. Zbl 1137.35388, MR 2011790
Reference: [13] Burq, N.: Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel.Acta Math. 180 (1998), 1-29 French. Zbl 0918.35081, MR 1618254, 10.1007/BF02392877
Reference: [14] Chai, S.: Uniform decay rate for the transmission wave equations with variable coefficients.J. Syst. Sci. Complex 24 (2011), 253-260. Zbl 1226.93111, MR 2802559, 10.1007/s11424-011-8009-4
Reference: [15] Chai, S., Liu, K.: Boundary stabilization of the transmission of wave equations with variable coefficients.Chin. Ann. Math., Ser. A 26 (2005), 605-612 Chinese. Zbl 1090.35010, MR 2186628
Reference: [16] Chen, S., Liu, K., Liu, Z.: Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping.SIAM J. Appl. Math. 59 (1999), 651-668. Zbl 0924.35018, MR 1654395, 10.1137/S0036139996292015
Reference: [17] Du, Q., Gunzburger, M. D., Hou, L. S., Lee, J.: Analysis of a linear fluid-structure interaction problem.Discrete Contin. Dyn. Syst. 9 (2003), 633-650. Zbl 1039.35076, MR 1974530, 10.3934/dcds.2003.9.633
Reference: [18] Duyckaerts, T.: Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface.Asymptotic. Anal. 51 (2007), 17-45. Zbl 1227.35062, MR 2294103
Reference: [19] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.Graduate Texts in Mathematics 194. Springer, Berlin (2000). Zbl 0952.47036, MR 1721989, 10.1007/b97696
Reference: [20] Hassine, F.: Stability of elastic transmission systems with a local Kelvin-Voigt damping.Eur. J. Control 23 (2015), 84-93. Zbl 1360.93600, MR 3339649, 10.1016/j.ejcon.2015.03.001
Reference: [21] Hassine, F.: Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1757-1774. Zbl 1350.35031, MR 3543607, 10.3934/dcdsb.2016021
Reference: [22] Hassine, F.: Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping.Int. J. Control 89 (2016), 1933-1950. Zbl 1364.35043, MR 3568279, 10.1080/00207179.2015.1135509
Reference: [23] Hassine, F.: Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping.J. Math. Anal. Appl. 455 (2017), 1765-1782. Zbl 1379.35024, MR 3671253, 10.1016/j.jmaa.2017.06.068
Reference: [24] Lagnese, J. E.: Boundary Stabilization of Thin Plates.SIAM Studies in Applied Mathematics 10. SIAM, Philadelphia (1989). Zbl 0696.73034, MR 1061153, 10.1137/1.9781611970821
Reference: [25] Lasiecka, I., Triggiani, R., Zhang, J.: Min-max game theory for elastic and visco-elastic fluid structure interactions.Open Appl. Math. J. 7 (2013), 1-17. Zbl 1322.74015, MR 3071536, 10.2174/1874114220130430001
Reference: [26] Lebeau, G., Robbiano, L.: Contrôle exacte de l'équation de la chaleur.Commun. Partial Differ. Equations 20 (1995), 335-356 French. Zbl 0819.35071, MR 1312710, 10.1080/03605309508821097
Reference: [27] Lebeau, G., Robbiano, L.: Stabilisation de l'équation des ondes par le bord.Duke Math. J. 86 (1997), 465-491 French. Zbl 0884.58093, MR 1432305, 10.1215/S0012-7094-97-08614-2
Reference: [28] Rousseau, J. Le, Lebeau, G.: Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques: Applications au prolongement unique et au contrôle des équations paraboliques.Available at https://hal.archives-ouvertes.fr/hal-00351736v2 (2009), 27 pages French.
Reference: [29] Rousseau, J. Le, Robbiano, L.: Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations.Arch. Ration. Mech. Anal. 195 (2010), 953-990. Zbl 1202.35336, MR 2591978, 10.1007/s00205-009-0242-9
Reference: [30] Li, Y.-F., Han, Z.-J., Xu, G.-Q.: Explicit decay rate for coupled string-beam system with localized frictional damping.Appl. Math. Lett. 78 (2018), 51-58. Zbl 1383.35028, MR 3739755, 10.1016/j.aml.2017.11.003
Reference: [31] Liu, K., Liu, Z.: Exponential decay of the energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping.SIAM J. Control Optim. 36 (1998), 1086-1098. Zbl 0909.35018, MR 1613917, 10.1137/S0363012996310703
Reference: [32] Liu, K., Liu, Z.: Exponential decay of energy of vibrating strings with local viscoelasticity.Z. Angew. Math. Phys. 53 (2002), 265-280. Zbl 0999.35012, MR 1900674, 10.1007/s00033-002-8155-6
Reference: [33] Liu, W., Williams, G.: The exponential stability of the problem of transmission of the wave equation.Bull. Aust. Math. Soc. 57 (1998), 305-327. Zbl 0914.35074, MR 1617324, 10.1017/S0004972700031683
Reference: [34] Ramos, A. J. A., Souza, M. W. P.: Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation.Z. Angew. Math. Phys. 68 (2017), Article ID 48, 11 pages. Zbl 1373.35191, MR 3626611, 10.1007/s00033-017-0791-y
Reference: [35] Rauch, J., Zhang, X., Zuazua, E.: Polynomial decay for a hyperbolic-parabolic coupled system.J. Math. Pures Appl., IX. Sér. 84 (2005), 407-470. Zbl 1077.35030, MR 2132724, 10.1016/j.matpur.2004.09.006
Reference: [36] Wloka, J. T., Rowley, B., Lawruk, B.: Boundary Value Problems for Elliptic System.Cambridge University Press, Cambridge (1995). Zbl 0836.35042, MR 1343490, 10.1017/CBO9780511662850
Reference: [37] Zhang, Q.: Exponential stability of an elastic string with local Kelvin-Voigt damping.Z. Angew. Math. Phys. 61 (2010), 1009-1015. Zbl 1273.74120, MR 2738301, 10.1007/s00033-010-0064-5
Reference: [38] Zhang, Q.: On the lack of exponential stability for an elastic-viscoelastic waves interaction system.Nonlinear Anal., Real World Appl. 37 (2017), 387-411. Zbl 1375.35037, MR 3648388, 10.1016/j.nonrwa.2017.02.019
Reference: [39] Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction.Arch. Ration. Mech. Anal. 184 (2007), 49-120. Zbl 1178.74075, MR 2289863, 10.1007/s00205-006-0020-x
.

Files

Files Size Format View
AplMat_67-2022-1_2.pdf 347.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo