Previous |  Up |  Next

Article

Title: A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone (English)
Author: Liu, Xiangjing
Author: Liu, Sanyang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 1
Year: 2022
Pages: 49-64
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient. (English)
Keyword: complementarity problem
Keyword: symmetric cone
Keyword: Levenberg-Marquardt method
Keyword: Euclidean Jordan algebra
Keyword: local error bound
MSC: 65K05
MSC: 65K10
MSC: 90C33
idZBL: Zbl 07478516
idMR: MR4392404
DOI: 10.21136/AM.2021.0064-20
.
Date available: 2022-02-08T10:48:04Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/149358
.
Reference: [1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5
Reference: [2] Amini, K., Rostami, F.: A modified two steps Levenberg-Marquardt method for nonlinear equations.J. Comput. Appl. Math. 288 (2015), 341-350. Zbl 1320.65074, MR 3349627, 10.1016/j.cam.2015.04.040
Reference: [3] Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems.SIAM J. Optim. 13 (2003), 960-985. Zbl 1076.90042, MR 2005912, 10.1137/S1052623400380584
Reference: [4] Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem.Math. Program. 104 (2005), 293-327. Zbl 1093.90063, MR 2179239, 10.1007/s10107-005-0617-0
Reference: [5] Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions.Optim. Methods Softw. 17 (2002), 605-626. Zbl 1030.65049, MR 1938337, 10.1080/1055678021000049345
Reference: [6] Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems.Math. Program. 76 (1997), 493-512. Zbl 0871.90096, MR 1433968, 10.1007/BF02614395
Reference: [7] Faraut, J., Korányi, A.: Analysis on Symmetric Cones.Oxford Mathematical Monographs. Oxford University Press, Oxford (1994). Zbl 0841.43002, MR 1446489
Reference: [8] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems.SIAM J. Optim. 12 (2002), 436-460. Zbl 0995.90094, MR 1885570, 10.1137/S1052623400380365
Reference: [9] Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration.SIAM J. Sci. Comput. 27 (2005), 622-645. Zbl 1094.68108, MR 2202237, 10.1137/040608982
Reference: [10] Harker, P. T., Pang, J.-S.: Finite-dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications.Math. Program., Ser. B 48 (1990), 161-220. Zbl 0734.90098, MR 1073707, 10.1007/BF01582255
Reference: [11] Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems.J. Nonlinear Convex Anal. 6 (2005), 283-296. Zbl 1137.91310, MR 2159841
Reference: [12] Kanno, Y., Martins, J. A. C., Costa, A. Pinto Da: Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem.Int. J. Numer. Methods Eng. 65 (2006), 62-83. Zbl 1106.74044, MR 2185946, 10.1002/nme.1493
Reference: [13] Kheirfam, B., Mahdavi-Amiri, N.: A new interior-point algorithm based on modified Nesterov-Todd direction for symmetric cone linear complementarity problem.Optim. Lett. 8 (2014), 1017-1029. Zbl 1320.90092, MR 3170583, 10.1007/s11590-013-0618-5
Reference: [14] Lu, N., Huang, Z.-H.: A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems.J. Optim. Theory Appl. 161 (2014), 446-464. Zbl 1291.90261, MR 3193800, 10.1007/s10957-013-0436-z
Reference: [15] Shahraki, M. Sayadi, Mansouri, H., Zangiabadi, M., Mahdavi-Amiri, N.: A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization.Numer. Algorithms 78 (2018), 535-552. Zbl 1395.90240, MR 3803358, 10.1007/s11075-017-0387-9
Reference: [16] Sun, D., Sun, J.: Löwner's operator and spectral functions in Euclidean Jordan algebras.Math. Oper. Res. 33 (2008), 421-445. Zbl 1218.90197, MR 2416001, 10.1287/moor.1070.0300
Reference: [17] Wang, G. Q., Bai, Y. Q.: A class of polynomial interior point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones.J. Optim. Theory Appl. 152 (2012), 739-772. Zbl 1251.90392, MR 2886370, 10.1007/s10957-011-9938-8
Reference: [18] Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method.Topics in Numerical Analysis Computing Supplementa 15. Springer, Wien (2001), 239-249. Zbl 1001.65047, MR 1874516, 10.1007/978-3-7091-6217-0_18
Reference: [19] Zhang, J.-L., Zhang, X.: A smoothing Levenberg-Marquardt method for NCP.Appl. Math. Comput. 178 (2006), 212-228. Zbl 1104.65061, MR 2248482, 10.1016/j.amc.2005.11.036
Reference: [20] Zhang, J., Zhang, K.: An inexact smoothing method for the monotone complementarity problem over symmetric cones.Optim. Methods Softw. 27 (2012), 445-459. Zbl 1243.49036, MR 2916855, 10.1080/10556788.2010.534164
Reference: [21] Zhang, L.: Solvability of semidefinite complementarity problems.Appl. Math. Comput. 196 (2008), 86-93. Zbl 1144.90495, MR 2382592, 10.1016/j.amc.2007.05.052
.

Files

Files Size Format View
AplMat_67-2022-1_3.pdf 253.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo