Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
circular cone complementarity problem; smoothing function; smoothing algorithm; superlinear/quadratical convergence
Summary:
There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. Moreover, we show that the iteration sequence must be bounded if the solution set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm has local superlinear or quadratical convergence under some assumptions which are much weaker than Jacobian nonsingularity assumption. Some numerical results are reported which demonstrate that our algorithm is very effective for solving CCCPs.
References:
[1] Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95 (2003), 3-51. DOI 10.1007/s10107-002-0339-5 | MR 1971381 | Zbl 1153.90522
[2] Alzalg, B.: The Jordan algebraic structure of the circular cone. Oper. Matrices 11 (2017), 1-21. DOI 10.7153/oam-11-01 | MR 3602626 | Zbl 1404.17046
[3] Bai, Y., Gao, X., Wang, G.: Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numer. Algebra Control Optim. 5 (2015), 211-231. DOI 10.3934/naco.2015.5.211 | MR 3365253 | Zbl 1317.90193
[4] Bai, Y., Ma, P., Zhang, J.: A polynomial-time interior-point method for circular cone programming based on kernel functions. J. Ind. Manag. Optim. 12 (2016), 739-756. DOI 10.3934/jimo.2016.12.739 | MR 3413849 | Zbl 1327.90192
[5] Burke, J., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem. Math. Program. 87 (2000), 113-130. DOI 10.1007/s101079900111 | MR 1734661 | Zbl 1081.90603
[6] Chen, J.-S., Pan, S.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8 (2012), 33-74. MR 2919670 | Zbl 1286.90148
[7] Chen, J.-S., Sun, D., Sun, J.: The $SC^1$ property of the squared norm of the SOC Fischer-Burmeister function. Oper. Res. Lett. 36 (2008), 385-392. DOI 10.1016/j.orl.2007.08.005 | MR 2424468 | Zbl 1152.90621
[8] Chen, L., Ma, C.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. Comput. Math. Appl. 61 (2011), 1407-1418. DOI 10.1016/j.camwa.2011.01.009 | MR 2773413 | Zbl 1217.65127
[9] Chen, X. D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25 (2003), 39-56. DOI 10.1023/A:1022996819381 | MR 1996662 | Zbl 1038.90084
[10] Chi, X., Liu, S.: A non-interior continuation method for second-order cone programming. Optimization 58 (2009), 965-979. DOI 10.1080/02331930701763421 | MR 2572781 | Zbl 1177.90318
[11] Chi, X., Liu, S.: A one-step smoothing Newton method for second-order cone programming. J. Comput. Appl. Math. 223 (2009), 114-123. DOI 10.1016/j.cam.2007.12.023 | MR 2463105 | Zbl 1155.65045
[12] Chi, X., Tao, J., Zhu, Z., Duan, F.: A regularized inexact smoothing Newton method for circular cone complementarity problem. Pac. J. Optim. 13 (2017), 197-218. MR 3711669 | Zbl 1386.65155
[13] Chi, X., Wan, Z., Zhu, Z., Yuan, L.: A nonmonotone smoothing Newton method for circular cone programming. Optimization 65 (2016), 2227-2250. DOI 10.1080/02331934.2016.1217861 | MR 3564914 | Zbl 1351.90149
[14] Chi, X., Wei, H., Wan, Z., Zhu, Z.: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1262-1280. DOI 10.1016/S0252-9602(17)30072-3 | MR 3683894 | Zbl 1399.90207
[15] Facchinei, F., Kanzow, C.: Beyond monotonicity in regularization methods for nonlinear complementarity problems. SIAM J. Control Optim. 37 (1999), 1150-1161. DOI 10.1137/S0363012997322935 | MR 1691935 | Zbl 0997.90085
[16] Fang, L., Feng, Z.: A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function. Comput. Appl. Math. 30 (2011), 569-588. DOI 10.1590/S1807-03022011000300005 | MR 2863924 | Zbl 1401.90152
[17] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12 (2001), 436-460. DOI 10.1137/S1052623400380365 | MR 1885570 | Zbl 0995.90094
[18] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15 (2005), 593-615. DOI 10.1137/S1052623403421516 | MR 2144183 | Zbl 1114.90139
[19] Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45 (2010), 557-579. DOI 10.1007/s10589-008-9180-y | MR 2600896 | Zbl 1198.90373
[20] Jin, P., Ling, C., Shen, H.: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming. Comput. Optim. Appl. 60 (2015), 675-695. DOI 10.1007/s10589-014-9698-0 | MR 3320940 | Zbl 1318.49062
[21] Ke, Y.-F., Ma, C.-F., Zhang, H.: The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems. Comput. Appl. Math. 37 (2018), 6795-6820. DOI 10.1007/s40314-018-0687-2 | MR 3885844 | Zbl 1413.90287
[22] Kheirfam, B., Wang, G.: An infeasible full NT-step interior point method for circular optimization. Numer. Algebra Control Optim. 7 (2017), 171-184. DOI 10.3934/naco.2017011 | MR 3665011 | Zbl 1365.90271
[23] Liu, W., Wang, C.: A smoothing Levenberg-Marquardt method for generalized semi-infinite programming. Comput. Appl. Math. 32 (2013), 89-105. DOI 10.1007/s40314-013-0013-y | MR 3101279 | Zbl 1291.90272
[24] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284 (1998), 193-228. DOI 10.1016/S0024-3795(98)10032-0 | MR 1655138 | Zbl 0946.90050
[25] Ma, P., Bai, Y., Chen, J.-S.: A self-concordant interior point algorithm for nonsymmetric circular cone programming. J. Nonlinear Convex Anal. 17 (2016), 225-241. MR 3472994 | Zbl 1354.90095
[26] Miao, X.-H., Guo, S., Qi, N., Chen, J.-S.: Constructions of complementarity functions and merit functions for circular cone complementarity problem. Comput. Optim. Appl. 63 (2016), 495-522. DOI 10.1007/s10589-015-9781-1 | MR 3457449 | Zbl 1360.90250
[27] Miao, X.-H., Yang, J., Hu, S.: A generalized Newton method for absolute value equations associated with circular cones. Appl. Math. Comput. 269 (2015), 155-168. DOI 10.1016/j.amc.2015.07.064 | MR 3396768 | Zbl 1410.65124
[28] Palais, R. S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics 1353. Springer, Berlin (1988). DOI 10.1007/BFb0087442 | MR 0972503 | Zbl 0658.49001
[29] Pirhaji, M., Zangiabadi, M., Mansouri, H.: A path following interior-point method for linear complementarity problems over circular cones. Japan J. Ind. Appl. Math. 35 (2018), 1103-1121. DOI 10.1007/s13160-018-0317-9 | MR 3868787 | Zbl 06990734
[30] Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program. 58 (1993), 353-367. DOI 10.1007/BF01581275 | MR 1216791 | Zbl 0780.90090
[31] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87 (2000), 1-35. DOI 10.1007/s101079900127 | MR 1734657 | Zbl 0989.90124
[32] Sun, D., Sun, J.: Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions. Math. Program. 103 (2005), 575-581. DOI 10.1007/s10107-005-0577-4 | MR 2166550 | Zbl 1099.90062
[33] Tang, J., Dong, L., Zhou, J., Sun, L.: A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optimization 64 (2015), 1935-1955. DOI 10.1080/02331934.2014.906595 | MR 3361160 | Zbl 1337.90071
[34] Tang, J., He, G., Dong, L., Fang, L., Zhou, J.: A smoothing Newton method for the second-order cone complementarity problem. Appl. Math., Praha 58 (2013), 223-247. DOI 10.1007/s10492-013-0011-9 | MR 3034823 | Zbl 1274.90268
[35] Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17 (2006), 1129-1153. DOI 10.1137/04061427X | MR 2274506 | Zbl 1136.90039
[36] Zhang, J., Chen, J.: A smoothing Levenberg-Marquardt type method for LCP. J. Comput. Math. 22 (2004), 735-752. MR 2080440 | Zbl 1068.65084
[37] Zhou, J., Chen, J.-S.: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14 (2013), 807-816. MR 3131148 | Zbl 1294.49007
[38] Zhou, J., Chen, J.-S., Hung, H.-F.: Circular cone convexity and some inequalities associated with circular cones. J. Inequal. Appl. 2013 (2013), Article ID 571, 17 pages. DOI 10.1186/1029-242X-2013-571 | MR 3212998 | Zbl 1297.26025
[39] Zhou, J., Chen, J.-S., Mordukhovich, B. S.: Variational analysis of circular cone programs. Optimization 64 (2015), 113-147. DOI 10.1080/02331934.2014.951043 | MR 3293544 | Zbl 1338.90396
[40] Zhou, J., Tang, J., Chen, J.-S.: Parabolic second-order directional differentiability in the Hadamard sense of the vector-valued functions associated with circular cones. J. Optim. Theory Appl. 172 (2017), 802-823. DOI 10.1007/s10957-016-0935-9 | MR 3610222 | Zbl 1362.90345
Partner of
EuDML logo