Previous |  Up |  Next

Article

Title: Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems (English)
Author: Tang, Jingyong
Author: Chen, Yuefen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 2
Year: 2022
Pages: 209-231
Summary lang: English
.
Category: math
.
Summary: There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. Moreover, we show that the iteration sequence must be bounded if the solution set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm has local superlinear or quadratical convergence under some assumptions which are much weaker than Jacobian nonsingularity assumption. Some numerical results are reported which demonstrate that our algorithm is very effective for solving CCCPs. (English)
Keyword: circular cone complementarity problem
Keyword: smoothing function
Keyword: smoothing algorithm
Keyword: superlinear/quadratical convergence
MSC: 65K05
MSC: 65K15
MSC: 90C25
MSC: 90C30
MSC: 90C33
idZBL: Zbl 07511502
idMR: MR4396685
DOI: 10.21136/AM.2021.0129-20
.
Date available: 2022-03-25T08:23:13Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149567
.
Reference: [1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5
Reference: [2] Alzalg, B.: The Jordan algebraic structure of the circular cone.Oper. Matrices 11 (2017), 1-21. Zbl 1404.17046, MR 3602626, 10.7153/oam-11-01
Reference: [3] Bai, Y., Gao, X., Wang, G.: Primal-dual interior-point algorithms for convex quadratic circular cone optimization.Numer. Algebra Control Optim. 5 (2015), 211-231. Zbl 1317.90193, MR 3365253, 10.3934/naco.2015.5.211
Reference: [4] Bai, Y., Ma, P., Zhang, J.: A polynomial-time interior-point method for circular cone programming based on kernel functions.J. Ind. Manag. Optim. 12 (2016), 739-756. Zbl 1327.90192, MR 3413849, 10.3934/jimo.2016.12.739
Reference: [5] Burke, J., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem.Math. Program. 87 (2000), 113-130. Zbl 1081.90603, MR 1734661, 10.1007/s101079900111
Reference: [6] Chen, J.-S., Pan, S.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs.Pac. J. Optim. 8 (2012), 33-74. Zbl 1286.90148, MR 2919670
Reference: [7] Chen, J.-S., Sun, D., Sun, J.: The $SC^1$ property of the squared norm of the SOC Fischer-Burmeister function.Oper. Res. Lett. 36 (2008), 385-392. Zbl 1152.90621, MR 2424468, 10.1016/j.orl.2007.08.005
Reference: [8] Chen, L., Ma, C.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems.Comput. Math. Appl. 61 (2011), 1407-1418. Zbl 1217.65127, MR 2773413, 10.1016/j.camwa.2011.01.009
Reference: [9] Chen, X. D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems.Comput. Optim. Appl. 25 (2003), 39-56. Zbl 1038.90084, MR 1996662, 10.1023/A:1022996819381
Reference: [10] Chi, X., Liu, S.: A non-interior continuation method for second-order cone programming.Optimization 58 (2009), 965-979. Zbl 1177.90318, MR 2572781, 10.1080/02331930701763421
Reference: [11] Chi, X., Liu, S.: A one-step smoothing Newton method for second-order cone programming.J. Comput. Appl. Math. 223 (2009), 114-123. Zbl 1155.65045, MR 2463105, 10.1016/j.cam.2007.12.023
Reference: [12] Chi, X., Tao, J., Zhu, Z., Duan, F.: A regularized inexact smoothing Newton method for circular cone complementarity problem.Pac. J. Optim. 13 (2017), 197-218. Zbl 1386.65155, MR 3711669
Reference: [13] Chi, X., Wan, Z., Zhu, Z., Yuan, L.: A nonmonotone smoothing Newton method for circular cone programming.Optimization 65 (2016), 2227-2250. Zbl 1351.90149, MR 3564914, 10.1080/02331934.2016.1217861
Reference: [14] Chi, X., Wei, H., Wan, Z., Zhu, Z.: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search.Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1262-1280. Zbl 1399.90207, MR 3683894, 10.1016/S0252-9602(17)30072-3
Reference: [15] Facchinei, F., Kanzow, C.: Beyond monotonicity in regularization methods for nonlinear complementarity problems.SIAM J. Control Optim. 37 (1999), 1150-1161. Zbl 0997.90085, MR 1691935, 10.1137/S0363012997322935
Reference: [16] Fang, L., Feng, Z.: A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function.Comput. Appl. Math. 30 (2011), 569-588. Zbl 1401.90152, MR 2863924, 10.1590/S1807-03022011000300005
Reference: [17] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems.SIAM J. Optim. 12 (2001), 436-460. Zbl 0995.90094, MR 1885570, 10.1137/S1052623400380365
Reference: [18] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems.SIAM J. Optim. 15 (2005), 593-615. Zbl 1114.90139, MR 2144183, 10.1137/S1052623403421516
Reference: [19] Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones.Comput. Optim. Appl. 45 (2010), 557-579. Zbl 1198.90373, MR 2600896, 10.1007/s10589-008-9180-y
Reference: [20] Jin, P., Ling, C., Shen, H.: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming.Comput. Optim. Appl. 60 (2015), 675-695. Zbl 1318.49062, MR 3320940, 10.1007/s10589-014-9698-0
Reference: [21] Ke, Y.-F., Ma, C.-F., Zhang, H.: The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems.Comput. Appl. Math. 37 (2018), 6795-6820. Zbl 1413.90287, MR 3885844, 10.1007/s40314-018-0687-2
Reference: [22] Kheirfam, B., Wang, G.: An infeasible full NT-step interior point method for circular optimization.Numer. Algebra Control Optim. 7 (2017), 171-184. Zbl 1365.90271, MR 3665011, 10.3934/naco.2017011
Reference: [23] Liu, W., Wang, C.: A smoothing Levenberg-Marquardt method for generalized semi-infinite programming.Comput. Appl. Math. 32 (2013), 89-105. Zbl 1291.90272, MR 3101279, 10.1007/s40314-013-0013-y
Reference: [24] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.Linear Algebra Appl. 284 (1998), 193-228. Zbl 0946.90050, MR 1655138, 10.1016/S0024-3795(98)10032-0
Reference: [25] Ma, P., Bai, Y., Chen, J.-S.: A self-concordant interior point algorithm for nonsymmetric circular cone programming.J. Nonlinear Convex Anal. 17 (2016), 225-241. Zbl 1354.90095, MR 3472994
Reference: [26] Miao, X.-H., Guo, S., Qi, N., Chen, J.-S.: Constructions of complementarity functions and merit functions for circular cone complementarity problem.Comput. Optim. Appl. 63 (2016), 495-522. Zbl 1360.90250, MR 3457449, 10.1007/s10589-015-9781-1
Reference: [27] Miao, X.-H., Yang, J., Hu, S.: A generalized Newton method for absolute value equations associated with circular cones.Appl. Math. Comput. 269 (2015), 155-168. Zbl 1410.65124, MR 3396768, 10.1016/j.amc.2015.07.064
Reference: [28] Palais, R. S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry.Lecture Notes in Mathematics 1353. Springer, Berlin (1988). Zbl 0658.49001, MR 0972503, 10.1007/BFb0087442
Reference: [29] Pirhaji, M., Zangiabadi, M., Mansouri, H.: A path following interior-point method for linear complementarity problems over circular cones.Japan J. Ind. Appl. Math. 35 (2018), 1103-1121. Zbl 06990734, MR 3868787, 10.1007/s13160-018-0317-9
Reference: [30] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275
Reference: [31] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities.Math. Program. 87 (2000), 1-35. Zbl 0989.90124, MR 1734657, 10.1007/s101079900127
Reference: [32] Sun, D., Sun, J.: Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions.Math. Program. 103 (2005), 575-581. Zbl 1099.90062, MR 2166550, 10.1007/s10107-005-0577-4
Reference: [33] Tang, J., Dong, L., Zhou, J., Sun, L.: A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search.Optimization 64 (2015), 1935-1955. Zbl 1337.90071, MR 3361160, 10.1080/02331934.2014.906595
Reference: [34] Tang, J., He, G., Dong, L., Fang, L., Zhou, J.: A smoothing Newton method for the second-order cone complementarity problem.Appl. Math., Praha 58 (2013), 223-247. Zbl 1274.90268, MR 3034823, 10.1007/s10492-013-0011-9
Reference: [35] Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones.SIAM J. Optim. 17 (2006), 1129-1153. Zbl 1136.90039, MR 2274506, 10.1137/04061427X
Reference: [36] Zhang, J., Chen, J.: A smoothing Levenberg-Marquardt type method for LCP.J. Comput. Math. 22 (2004), 735-752. Zbl 1068.65084, MR 2080440
Reference: [37] Zhou, J., Chen, J.-S.: Properties of circular cone and spectral factorization associated with circular cone.J. Nonlinear Convex Anal. 14 (2013), 807-816. Zbl 1294.49007, MR 3131148
Reference: [38] Zhou, J., Chen, J.-S., Hung, H.-F.: Circular cone convexity and some inequalities associated with circular cones.J. Inequal. Appl. 2013 (2013), Article ID 571, 17 pages. Zbl 1297.26025, MR 3212998, 10.1186/1029-242X-2013-571
Reference: [39] Zhou, J., Chen, J.-S., Mordukhovich, B. S.: Variational analysis of circular cone programs.Optimization 64 (2015), 113-147. Zbl 1338.90396, MR 3293544, 10.1080/02331934.2014.951043
Reference: [40] Zhou, J., Tang, J., Chen, J.-S.: Parabolic second-order directional differentiability in the Hadamard sense of the vector-valued functions associated with circular cones.J. Optim. Theory Appl. 172 (2017), 802-823. Zbl 1362.90345, MR 3610222, 10.1007/s10957-016-0935-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo