Previous |  Up |  Next

Article

Title: A characterization of sets in ${\mathbb R}^2$ with DC distance function (English)
Author: Pokorný, Dušan
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 1-38
Summary lang: English
.
Category: math
.
Summary: We give a complete characterization of closed sets $F \subset {\mathbb R}^2$ whose distance function $d_F:= {\rm dist}(\cdot ,F)$ is DC (i.e., is the difference of two convex functions on ${\mathbb R}^2$). Using this characterization, a number of properties of such sets is proved. (English)
Keyword: distance function
Keyword: DC function
Keyword: subset of ${\mathbb R}^2$
MSC: 26B25
idZBL: Zbl 07511551
idMR: MR4389104
DOI: 10.21136/CMJ.2021.0228-20
.
Date available: 2022-03-25T08:24:57Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149569
.
Reference: [1] Bačák, M., Borwein, J. M.: On difference convexity of locally Lipschitz functions.Optimization 60 (2011), 961-978. Zbl 1237.46007, MR 2860286, 10.1080/02331931003770411
Reference: [2] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications 58. Birkhäuser, Boston (2004). Zbl 1095.49003, MR 2041617, 10.1007/b138356
Reference: [3] Duda, J.: Curves with finite turn.Czech. Math. J. 58 (2008), 23-49. Zbl 1167.46321, MR 2402524, 10.1007/s10587-008-0003-1
Reference: [4] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. John Wiley & Sons, New York (1999). Zbl 0924.28001, MR 1681462
Reference: [5] Fu, J. H. G.: Integral geometric regularity.Tensor Valuations and Their Applications in Stochastic Geometry and Imaging Lecture Notes in Mathematics 2177. Springer, Cham (2017), 261-299 \99999DOI99999 10.1007/978-3-319-51951-7_10 . Zbl 1368.53052, MR 3702376
Reference: [6] Fu, J. H. G., Pokorný, D., Rataj, J.: Kinematic formulas for sets defined by differences of convex functions.Adv. Math. 311 (2017), 796-832. Zbl 1403.53062, MR 3628231, 10.1016/j.aim.2017.03.003
Reference: [7] Hartman, P.: On functions representable as a difference of convex functions.Pac. J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [8] Pokorný, D., Rataj, J.: Normal cycles and curvature measures of sets with d.c. boundary.Adv. Math. 248 (2013), 963-985. Zbl 1286.58002, MR 3107534, 10.1016/j.aim.2013.08.022
Reference: [9] Pokorný, D., Rataj, J., Zajíček, L.: On the structure of WDC sets.Math. Nachr. 292 (2019), 1595-1626. Zbl 1429.26022, MR 3982330, 10.1002/mana.201700253
Reference: [10] Pokorný, D., Zajíček, L.: On sets in $\mathbb R^d$ with DC distance function.J. Math. Anal. Appl. 482 (2020), Article ID 123536, 14 pages. Zbl 1434.26028, MR 4015277, 10.1016/j.jmaa.2019.123536
Reference: [11] Pokorný, D., Zajíček, L.: Remarks on WDC sets.Commentat. Math. Univ. Carol. 62 (2021), 81-94. MR 4270468, 10.14712/1213-7243.2021.006
Reference: [12] Roberts, A. W., Varberg, D. E.: Convex Functions.Pure and Applied Mathematics 57. Academic Press, New York (1973). Zbl 0271.26009, MR 0442824
Reference: [13] Saks, S.: Theory of the Integral.Dover Publications, New York (1964). Zbl 1196.28001, MR 0167578
Reference: [14] Shapiro, A.: On concepts of directional differentiability.J. Optimization Theory Appl. 66 (1990), 477-487. Zbl 0682.49015, MR 1080259, 10.1007/BF00940933
Reference: [15] Tuy, H.: Convex Analysis and Global Optimization.Springer Optimization and Its Applications 110. Springer, Cham (2016). Zbl 1362.90001, MR 3560830, 10.1007/978-3-319-31484-6
Reference: [16] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications.Diss. Math. 289 (1989), 48 pages. Zbl 0685.46027, MR 1016045
Reference: [17] Veselý, L., Zajíček, L.: On vector functions of bounded convexity.Math. Bohem. 133 (2008), 321-335. Zbl 1199.47242, MR 2494785, 10.21136/MB.2008.140621
Reference: [18] Willard, S.: General Topology.Addison-Wesley Series in Mathematics. Addison-Wesley Publishing, Reading (1970). Zbl 0205.26601, MR 0264581
.

Files

Files Size Format View
CzechMathJ_72-2022-1_1.pdf 428.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo