Previous |  Up |  Next

Article

Title: Packing four copies of a tree into a complete bipartite graph (English)
Author: Pu, Liqun
Author: Tang, Yuan
Author: Gao, Xiaoli
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 39-57
Summary lang: English
.
Category: math
.
Summary: In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree $T$ of order $n$ and each integer $k\geq 2$, there is a $k$-packing of $T$ in a complete bipartite graph $B_{n+k-1}$ whose order is $n+k-1$. We prove the conjecture is true for $k=4$. (English)
Keyword: packing
Keyword: bipartite packing
Keyword: embedding
MSC: 05C05
MSC: 05C70
idZBL: Zbl 07511552
idMR: MR4389105
DOI: 10.21136/CMJ.2021.0249-20
.
Date available: 2022-03-25T08:25:25Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149572
.
Reference: [1] Fouquet, J.-L., Wojda, A. P.: Mutual placement of bipartite graphs.Discrete Math. 121 (1993), 85-92. Zbl 0791.05080, MR 1246160, 10.1016/0012-365X(93)90540-A
Reference: [2] Hobbs, A. M., Bourgeois, B. A., Kasiraj, J.: Packing trees in complete graphs.Discrete Math. 67 (1987), 27-42. Zbl 0642.05043, MR 0908184, 10.1016/0012-365X(87)90164-6
Reference: [3] Wang, H.: Packing two forests into a bipartite graph.J. Graph Theory 23 (1996), 209-213. Zbl 0858.05089, MR 1408349, 10.1002/(SICI)1097-0118(199610)23:2<209::AID-JGT12>3.0.CO;2-B
Reference: [4] Wang, H.: Packing three copies of a tree into a complete bipartite graph.Ann. Comb. 13 (2009), 261-269. Zbl 1229.05233, MR 2529729, 10.1007/s00026-009-0022-0
Reference: [5] Wang, H., Sauer, N.: The chromatic number of the two-packings of a forest.The Mathematics of Paul Erdős. Vol. II Algorithms and Combinatorics 14. Springer, Berlin (1997), 99-120. Zbl 0876.05029, MR 1425209, 10.1007/978-3-642-60406-5_11
Reference: [6] West, D. B.: Introduction to Graph Theory.Prentice-Hall, Upper Saddle River (1996). Zbl 0845.05001, MR 1367739
Reference: [7] Woźniak, M.: Packing of graphs and permutations - a survey.Discrete Math. 276 (2004), 379-391. Zbl 1031.05041, MR 2046650, 10.1016/S0012-365X(03)00296-6
Reference: [8] Yap, H. P.: Packing of graphs - a survey.Discrete Math. 72 (1988), 395-404. Zbl 0685.05036, MR 0975562, 10.1016/0012-365X(88)90232-4
.

Files

Files Size Format View
CzechMathJ_72-2022-1_2.pdf 314.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo