Title:
|
Hardy and Rellich type inequalities with remainders (English) |
Author:
|
Nasibullin, Ramil |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
87-110 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains. (English) |
Keyword:
|
Hardy inequality |
Keyword:
|
Rellich type inequality |
Keyword:
|
Bessel function |
Keyword:
|
Lamb constant |
Keyword:
|
distance function |
Keyword:
|
Laplace operator |
MSC:
|
26D10 |
MSC:
|
26D15 |
idZBL:
|
Zbl 07511555 |
idMR:
|
MR4389108 |
DOI:
|
10.21136/CMJ.2021.0325-20 |
. |
Date available:
|
2022-03-25T08:27:00Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149575 |
. |
Reference:
|
[1] Avkhadiev, F. G.: Hardy type inequalities in higher dimensions with explicit estimate of constants.Lobachevskii J. Math. 21 (2006), 3-31. Zbl 1120.26008, MR 2220697 |
Reference:
|
[2] Avkhadiev, F. G.: Hardy-type inequalities on planar and spatial open sets.Proc. Steklov Inst. Math. 255 (2006), 2-12. Zbl 1351.42024, MR 2301606, 10.1134/S008154380604002X |
Reference:
|
[3] Avkhadiev, F. G.: A geometric description of domains whose Hardy constant is equal to 1/4.Izv. Math. 78 (2014), 855-876. Zbl 1315.26012, MR 3308642, 10.1070/IM2014v078n05ABEH002710 |
Reference:
|
[4] Avkhadiev, F. G.: Integral inequalities in domains of hyperbolic type and their applications.Sb. Math. 206 (2015), 1657-1681. Zbl 1359.30004, MR 3438572, 10.1070/SM2015v206n12ABEH004508 |
Reference:
|
[5] Avkhadiev, F. G.: Hardy-Rellich inequalities in domains of the Euclidean space.J. Math. Anal. Appl. 442 (2016), 469-484. Zbl 1342.26046, MR 3504010, 10.1016/j.jmaa.2016.05.004 |
Reference:
|
[6] Avkhadiev, F. G.: Rellich inequalities for polyharmonic operators in plane domains.Sb. Math. 209 (2018), 292-319. Zbl 1395.35003, MR 3769213, 10.1070/SM8739 |
Reference:
|
[7] Avkhadiev, F. G.: Hardy-Rellich integral inequalities in domains satisfying the exterior sphere condition.St. Petersbg. Math. J. 30 (2019), 161-179. Zbl 1408.26017, MR 3790730, 10.1090/spmj/1536 |
Reference:
|
[8] Avkhadiev, F. G., Nasibullin, R. G.: Hardy-type inequalities in arbitrary domains with finite inner radius.Sib. Math. J. 55 (2014), 191-200. Zbl 1315.26016, MR 3237329, 10.1134/S0037446614020013 |
Reference:
|
[9] Avkhadiev, F. G., Shafigullin, I. K.: Sharp estimates of Hardy constants for domains with special boundary properties.Russ. Math. 58 (2014), 58-61. Zbl 1317.46020, MR 3254462, 10.3103/S1066369X14020091 |
Reference:
|
[10] Avkhadiev, F. G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains.ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. Zbl 1145.26005, MR 2354734, 10.1002/zamm.200710342 |
Reference:
|
[11] Avkhadiev, F. G., Wirths, K.-J.: Sharp Hardy-type inequalities with Lamb's constants.Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. Zbl 1237.26014, MR 2907615, 10.36045/bbms/1320763133 |
Reference:
|
[12] Balinsky, A. A., Evans, W. D., Lewis, R. T.: The Analysis and Geometry of Hardy's Inequality.Universitext. Springer, Cham (2015). Zbl 1332.26005, MR 3408787, 10.1007/978-3-319-22870-9 |
Reference:
|
[13] Barbatis, G.: Improved Rellich inequalities for the polyharmonic operator.Indiana Univ. Math. J. 55 (2006), 1401-1422. Zbl 1225.31006, MR 2269418, 10.1512/iumj.2006.55.2752 |
Reference:
|
[14] Brezis, H., Marcus, M.: Hardy's inequality revisited.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. Zbl 1011.46027, MR 1655516 |
Reference:
|
[15] Davies, E. B.: Spectral Theory and Differential Operators.Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). Zbl 0893.47004, MR 1349825, 10.1017/CBO9780511623721 |
Reference:
|
[16] Davies, E. B.: The Hardy constant.Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. Zbl 0857.26005, MR 1366614, 10.1093/qmath/46.4.417 |
Reference:
|
[17] Evans, W. D., Lewis, R. T.: Hardy and Rellich inequalities with remainders.J. Math. Inequal. 1 (2007), 473-490. Zbl 1220.47024, MR 2408402, 10.7153/jmi-01-40 |
Reference:
|
[18] Filippas, S., Maz'ya, V., Tertikas, A.: On a question of Brezis and Marcus.Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. Zbl 1121.26014, MR 2214621, 10.1007/s00526-005-0353-6 |
Reference:
|
[19] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0944909 |
Reference:
|
[20] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy's inequality.J. Funct. Anal. 189 (2002), 539-548. Zbl 1012.26011, MR 1892180, 10.1006/jfan.2001.3859 |
Reference:
|
[21] Makarov, R. V., Nasibullin, R. G.: Hardy type inequalities and parametric Lamb equation.Indag. Math., New Ser. 31 (2020), 632-649. Zbl 1452.26017, MR 4126759, 10.1016/j.indag.2020.06.004 |
Reference:
|
[22] Marcus, M., Mizel, V. J., Pinchover, Y.: On the best constant for Hardy's inequality in $\mathbb R^n$.Trans. Am. Math. Soc. 350 (1998), 3237-3255. Zbl 0917.26016, MR 1458330, 10.1090/S0002-9947-98-02122-9 |
Reference:
|
[23] Matskewich, T., Sobolevskii, P. E.: The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. Zbl 0876.46025, MR 1431208, 10.1016/S0362-546X(96)00004-1 |
Reference:
|
[24] Maz'ya, V. G.: Sobolev spaces.Springer Series in Soviet Mathematics. Springer, Berlin (1985). Zbl 0692.46023, MR 0817985, 10.1007/978-3-662-09922-3 |
Reference:
|
[25] Nasibullin, R. G.: Hardy type inequalities with weights dependent on the Bessel functions.Lobachevskii J. Math. 37 (2016), 274-283. Zbl 1350.26036, MR 3512705, 10.1134/S1995080216030185 |
Reference:
|
[26] Nasibullin, R. G.: Sharp Hardy type inequalities with weights depending on Bessel function.Ufa Math. J. 9 (2017), 89-97. MR 3646148, 10.13108/2017-9-1-89 |
Reference:
|
[27] Nasibullin, R. G.: A geometrical version of Hardy-Rellich type inequalities.Math. Slovaca 69 (2019), 785-800. Zbl 07289558, MR 3985017, 10.1515/ms-2017-0268 |
Reference:
|
[28] Nasibullin, R. G.: Brezis-Marcus type inequalities with Lamb constant.Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. Zbl 1411.26021, MR 3938782, 10.33048/semi.2019.16.027 |
Reference:
|
[29] Nasibullin, R. G.: Multidimensional Hardy type inequalities with remainders.Lobachevskii J. Math. 40 (2019), 1383-1396. Zbl 1439.26046, MR 4021527, 10.1134/S1995080219090166 |
Reference:
|
[30] Nasibullin, R. G., Tukhvatullina, A. M.: Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains.Ufa Math. J. 5 (2013), 43-55. MR 3430775, 10.13108/2013-5-2-43 |
Reference:
|
[31] Owen, M. P.: The Hardy-Rellich inequality for polyharmonic operators.Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. Zbl 0935.46032, MR 1718522, 10.1017/S0308210500013160 |
Reference:
|
[32] Shum, D. T.: On a class of new inequalities.Trans. Am. Math. Soc. 204 (1975), 299-341. Zbl 0302.26010, MR 0357715, 10.1090/S0002-9947-1975-0357715-3 |
Reference:
|
[33] Tidblom, J.: A geometrical version of Hardy's inequality for {\it \accent23W}$^{1,p}(\Omega)$.Proc. Am. Math. Soc. 132 (2004), 2265-2271. Zbl 1062.26010, MR 2052402, 10.1090/S0002-9939-04-07526-4 |
Reference:
|
[34] Tukhvatullina, A. M.: Hardy type inequalities for a special family of non-convex domains.Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. Zbl 1259.26032, MR 3151535 |
. |