Previous |  Up |  Next

Article

Title: Hardy and Rellich type inequalities with remainders (English)
Author: Nasibullin, Ramil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 87-110
Summary lang: English
.
Category: math
.
Summary: Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains. (English)
Keyword: Hardy inequality
Keyword: Rellich type inequality
Keyword: Bessel function
Keyword: Lamb constant
Keyword: distance function
Keyword: Laplace operator
MSC: 26D10
MSC: 26D15
idZBL: Zbl 07511555
idMR: MR4389108
DOI: 10.21136/CMJ.2021.0325-20
.
Date available: 2022-03-25T08:27:00Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149575
.
Reference: [1] Avkhadiev, F. G.: Hardy type inequalities in higher dimensions with explicit estimate of constants.Lobachevskii J. Math. 21 (2006), 3-31. Zbl 1120.26008, MR 2220697
Reference: [2] Avkhadiev, F. G.: Hardy-type inequalities on planar and spatial open sets.Proc. Steklov Inst. Math. 255 (2006), 2-12. Zbl 1351.42024, MR 2301606, 10.1134/S008154380604002X
Reference: [3] Avkhadiev, F. G.: A geometric description of domains whose Hardy constant is equal to 1/4.Izv. Math. 78 (2014), 855-876. Zbl 1315.26012, MR 3308642, 10.1070/IM2014v078n05ABEH002710
Reference: [4] Avkhadiev, F. G.: Integral inequalities in domains of hyperbolic type and their applications.Sb. Math. 206 (2015), 1657-1681. Zbl 1359.30004, MR 3438572, 10.1070/SM2015v206n12ABEH004508
Reference: [5] Avkhadiev, F. G.: Hardy-Rellich inequalities in domains of the Euclidean space.J. Math. Anal. Appl. 442 (2016), 469-484. Zbl 1342.26046, MR 3504010, 10.1016/j.jmaa.2016.05.004
Reference: [6] Avkhadiev, F. G.: Rellich inequalities for polyharmonic operators in plane domains.Sb. Math. 209 (2018), 292-319. Zbl 1395.35003, MR 3769213, 10.1070/SM8739
Reference: [7] Avkhadiev, F. G.: Hardy-Rellich integral inequalities in domains satisfying the exterior sphere condition.St. Petersbg. Math. J. 30 (2019), 161-179. Zbl 1408.26017, MR 3790730, 10.1090/spmj/1536
Reference: [8] Avkhadiev, F. G., Nasibullin, R. G.: Hardy-type inequalities in arbitrary domains with finite inner radius.Sib. Math. J. 55 (2014), 191-200. Zbl 1315.26016, MR 3237329, 10.1134/S0037446614020013
Reference: [9] Avkhadiev, F. G., Shafigullin, I. K.: Sharp estimates of Hardy constants for domains with special boundary properties.Russ. Math. 58 (2014), 58-61. Zbl 1317.46020, MR 3254462, 10.3103/S1066369X14020091
Reference: [10] Avkhadiev, F. G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains.ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. Zbl 1145.26005, MR 2354734, 10.1002/zamm.200710342
Reference: [11] Avkhadiev, F. G., Wirths, K.-J.: Sharp Hardy-type inequalities with Lamb's constants.Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. Zbl 1237.26014, MR 2907615, 10.36045/bbms/1320763133
Reference: [12] Balinsky, A. A., Evans, W. D., Lewis, R. T.: The Analysis and Geometry of Hardy's Inequality.Universitext. Springer, Cham (2015). Zbl 1332.26005, MR 3408787, 10.1007/978-3-319-22870-9
Reference: [13] Barbatis, G.: Improved Rellich inequalities for the polyharmonic operator.Indiana Univ. Math. J. 55 (2006), 1401-1422. Zbl 1225.31006, MR 2269418, 10.1512/iumj.2006.55.2752
Reference: [14] Brezis, H., Marcus, M.: Hardy's inequality revisited.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. Zbl 1011.46027, MR 1655516
Reference: [15] Davies, E. B.: Spectral Theory and Differential Operators.Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). Zbl 0893.47004, MR 1349825, 10.1017/CBO9780511623721
Reference: [16] Davies, E. B.: The Hardy constant.Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. Zbl 0857.26005, MR 1366614, 10.1093/qmath/46.4.417
Reference: [17] Evans, W. D., Lewis, R. T.: Hardy and Rellich inequalities with remainders.J. Math. Inequal. 1 (2007), 473-490. Zbl 1220.47024, MR 2408402, 10.7153/jmi-01-40
Reference: [18] Filippas, S., Maz'ya, V., Tertikas, A.: On a question of Brezis and Marcus.Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. Zbl 1121.26014, MR 2214621, 10.1007/s00526-005-0353-6
Reference: [19] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0944909
Reference: [20] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy's inequality.J. Funct. Anal. 189 (2002), 539-548. Zbl 1012.26011, MR 1892180, 10.1006/jfan.2001.3859
Reference: [21] Makarov, R. V., Nasibullin, R. G.: Hardy type inequalities and parametric Lamb equation.Indag. Math., New Ser. 31 (2020), 632-649. Zbl 1452.26017, MR 4126759, 10.1016/j.indag.2020.06.004
Reference: [22] Marcus, M., Mizel, V. J., Pinchover, Y.: On the best constant for Hardy's inequality in $\mathbb R^n$.Trans. Am. Math. Soc. 350 (1998), 3237-3255. Zbl 0917.26016, MR 1458330, 10.1090/S0002-9947-98-02122-9
Reference: [23] Matskewich, T., Sobolevskii, P. E.: The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. Zbl 0876.46025, MR 1431208, 10.1016/S0362-546X(96)00004-1
Reference: [24] Maz'ya, V. G.: Sobolev spaces.Springer Series in Soviet Mathematics. Springer, Berlin (1985). Zbl 0692.46023, MR 0817985, 10.1007/978-3-662-09922-3
Reference: [25] Nasibullin, R. G.: Hardy type inequalities with weights dependent on the Bessel functions.Lobachevskii J. Math. 37 (2016), 274-283. Zbl 1350.26036, MR 3512705, 10.1134/S1995080216030185
Reference: [26] Nasibullin, R. G.: Sharp Hardy type inequalities with weights depending on Bessel function.Ufa Math. J. 9 (2017), 89-97. MR 3646148, 10.13108/2017-9-1-89
Reference: [27] Nasibullin, R. G.: A geometrical version of Hardy-Rellich type inequalities.Math. Slovaca 69 (2019), 785-800. Zbl 07289558, MR 3985017, 10.1515/ms-2017-0268
Reference: [28] Nasibullin, R. G.: Brezis-Marcus type inequalities with Lamb constant.Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. Zbl 1411.26021, MR 3938782, 10.33048/semi.2019.16.027
Reference: [29] Nasibullin, R. G.: Multidimensional Hardy type inequalities with remainders.Lobachevskii J. Math. 40 (2019), 1383-1396. Zbl 1439.26046, MR 4021527, 10.1134/S1995080219090166
Reference: [30] Nasibullin, R. G., Tukhvatullina, A. M.: Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains.Ufa Math. J. 5 (2013), 43-55. MR 3430775, 10.13108/2013-5-2-43
Reference: [31] Owen, M. P.: The Hardy-Rellich inequality for polyharmonic operators.Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. Zbl 0935.46032, MR 1718522, 10.1017/S0308210500013160
Reference: [32] Shum, D. T.: On a class of new inequalities.Trans. Am. Math. Soc. 204 (1975), 299-341. Zbl 0302.26010, MR 0357715, 10.1090/S0002-9947-1975-0357715-3
Reference: [33] Tidblom, J.: A geometrical version of Hardy's inequality for {\it \accent23W}$^{1,p}(\Omega)$.Proc. Am. Math. Soc. 132 (2004), 2265-2271. Zbl 1062.26010, MR 2052402, 10.1090/S0002-9939-04-07526-4
Reference: [34] Tukhvatullina, A. M.: Hardy type inequalities for a special family of non-convex domains.Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. Zbl 1259.26032, MR 3151535
.

Files

Files Size Format View
CzechMathJ_72-2022-1_5.pdf 318.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo