Previous |  Up |  Next

Article

Title: Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class (English)
Author: Ren, Yanbo
Author: Ding, Shuang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 79-85
Summary lang: English
.
Category: math
.
Summary: We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form $$ \Phi _{1} (\lambda ) \varrho ( \{x\in X\colon M_\mu f (x) > \lambda \} ) \le c \int _X \Phi _{2} (c | {f(x)} | ) \sigma (x) {\rm d} \mu (x), $$ which extends some known results. (English)
Keyword: weight
Keyword: weak type inequality
Keyword: Hardy-Littlewood maximal function
Keyword: Orlicz class
MSC: 42B25
MSC: 46E30
idZBL: Zbl 07511554
idMR: MR4389107
DOI: 10.21136/CMJ.2021.0320-20
.
Date available: 2022-03-25T08:26:24Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149574
.
Reference: [1] Bagby, R. J.: Weak bounds for the maximal function in weighted Orlicz spaces.Stud. Math. 96 (1990), 195-204. Zbl 0718.42018, MR 1060723, 10.4064/sm-95-3-195-204
Reference: [2] Bloom, S., Kerman, R.: Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator.Stud. Math. 110 (1994), 149-167. Zbl 0813.42014, MR 1279989, 10.4064/sm-110-2-149-167
Reference: [3] Gallardo, D.: Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator.Isr. J. Math. 67 (1989), 95-108. Zbl 0683.42021, MR 1021364, 10.1007/BF02764902
Reference: [4] Gogatishvili, A., Kokilashvili, V.: Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I.Georgian Math. J. 2 (1995), 361-384. Zbl 0836.42012, MR 1344301, 10.1515/GMJ.1995.361
Reference: [5] Kerman, R. A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function.Stud. Math. 71 (1982), 277-284. Zbl 0517.42030, MR 0667316, 10.4064/sm-71-3-277-284
Reference: [6] Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces.World Scientific, Singapore (1991). Zbl 0751.46021, MR 1156767, 10.1142/1367
Reference: [7] Lai, Q.: Two weight $\Phi$-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals.Proc. Am. Math. Soc. 118 (1993), 129-142. Zbl 0783.42010, MR 1123665, 10.1090/S0002-9939-1993-1123665-4
Reference: [8] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 293384, 10.2307/1995882
Reference: [9] Pick, L.: Two-weight weak type maximal inequalities in Orlicz classes.Stud. Math. 100 (1991), 207-218. Zbl 0752.42012, MR 1133385, 10.4064/sm-100-3-207-218
Reference: [10] Rao, M. M., Ren, Z. D.: Applications of Orlicz Spaces.Pure and Applied Mathematics, Marcel Dekker 250. Marcel Dekker, New York (2002). Zbl 0997.46027, MR 1890178, 10.1201/9780203910863
.

Files

Files Size Format View
CzechMathJ_72-2022-1_4.pdf 203.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo