Previous |  Up |  Next

Article

Title: $n$-${\rm gr}$-coherent rings and Gorenstein graded modules (English)
Author: Amini, Mostafa
Author: Bennis, Driss
Author: Mamdouhi, Soumia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 125-148
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a graded ring and $n\geq 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively. (English)
Keyword: $n$-gr-coherent ring
Keyword: Gorenstein $n$-FP-gr-injective module
Keyword: Gorenstein $n$-gr-flat module
Keyword: cover
Keyword: (pre)envelope
MSC: 16D40
MSC: 16D50
MSC: 16E30
MSC: 16W50
idZBL: Zbl 07511557
idMR: MR4389110
DOI: 10.21136/CMJ.2021.0359-20
.
Date available: 2022-03-25T08:27:52Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149577
.
Reference: [1] Adarbeh, K., Kabbaj, S.: Trivial extensions subject to semi-regularity and semi-coherence.Quaest. Math. 43 (2020), 45-54. Zbl 1431.13013, MR 4058586, 10.2989/16073606.2018.1533900
Reference: [2] Anderson, D. D., Bennis, D., Fahid, B., Shaiea, A.: On $n$-trivial extensions of rings.Rocky Mt. J. Math. 47 (2017), 2439-2511. Zbl 1390.13025, MR 3760303, 10.1216/RMJ-2017-47-8-2439
Reference: [3] Anderson, D. D., Winders, M.: Idealization of a module.J. Commun. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [4] Hügel, L. Angeleri, Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings.Forum Math. 18 (2006), 211-229. Zbl 1107.16010, MR 2218418, 10.1515/FORUM.2006.013
Reference: [5] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-flat modules.Commun. Algebra 26 (1998), 3195-3209. Zbl 0912.16022, MR 1641595, 10.1080/00927879808826336
Reference: [6] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective and gr-projective modules.Commun. Algebra 26 (1998), 225-240. Zbl 0895.16020, MR 1600686, 10.1080/00927879808826128
Reference: [7] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Covers and envelopes over gr-Gorenstein rings.J. Algebra 215 (1999), 437-457. Zbl 0942.16049, MR 1686200, 10.1006/jabr.1998.7722
Reference: [8] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: FP-gr-injective modules and gr-FC- rings.Algebra and Number Theory Lecture Notes in Pure and Applied Mathematics 208. Marcel Dekker, New York (2000), 1-11. Zbl 0963.16041, MR 1724670, 10.1201/9780203903889.CH1
Reference: [9] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective modules over graded isolated singularities.Commun. Algebra 28 (2000), 3197-3207. Zbl 0998.16031, MR 1765311, 10.1080/00927870008827019
Reference: [10] Bravo, D., Pérez, M. A.: Finiteness conditions and cotorsion pairs.J. Pure Appl. Algebra 221 (2017), 1249-1267. Zbl 1362.18019, MR 3599429, 10.1016/j.jpaa.2016.09.008
Reference: [11] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742
Reference: [12] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061
Reference: [13] Dobbs, D. E., Kabbaj, S.-E., Mahdou, N.: $n$-coherent rings and modules.Commutative ring theory Lecture Notes in Pure and Applied Mathematics 185. Marcel Dekker, New York (1997), 269-281. Zbl 0947.13011, MR 1422485
Reference: [14] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [16] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules.J. Nanjing Univ, Math. Biq. 10 (1993), 1-9. Zbl 0794.16001, MR 1248299
Reference: [17] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory.Lecture Notes in Mathematics 456. Springer, Berlin (1975). Zbl 0303.18006, MR 0389981, 10.1007/BFb0065404
Reference: [18] Gao, Z., Peng, J.: $n$-strongly Gorenstein graded modules.Czech. Math. J. 69 (2019), 55-73. Zbl 07088769, MR 3923574, 10.21136/CMJ.2018.0160-17
Reference: [19] Gao, Z., Wang, F.: Coherent rings and Gorenstein FP-injective modules.Commun. Algebra 40 (2012), 1669-1679. Zbl 1257.16004, MR 2924475, 10.1080/00927872.2011.554473
Reference: [20] Rozas, J. R. García, Ramos, J. A. López, Torrecillas, B.: On the existence of flat covers in $R$-gr.Commun. Algebra 29 (2001), 3341-3349. Zbl 0992.16034, MR 1849490, 10.1081/AGB-100105025
Reference: [21] Gillespie, J.: Model structures on modules over Ding-Chen rings.Homology Homotopy Appl. 12 (2010), 61-73. Zbl 1231.16005, MR 2607410, 10.4310/HHA.2010.v12.n1.a6
Reference: [22] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [23] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs.J. Commun. Algebra 1 (2009), 621-633. Zbl 1184.13042, MR 2575834, 10.1216/JCA-2009-1-4-621
Reference: [24] Mahdou, N.: On Costa's conjecture.Commun. Algebra 29 (2001), 2775-2785. Zbl 1016.13010, MR 1848381, 10.1081/AGB-4986
Reference: [25] Mao, L.: Ding-graded modules and Gorenstein gr-flat modules.Glasg. Math. J. 60 (2018), 339-360. Zbl 1444.16055, MR 3784053, 10.1017/S0017089517000155
Reference: [26] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules.J. Algebra Appl. 7 (2008), 491-506. Zbl 1165.16004, MR 2442073, 10.1142/S0219498808002953
Reference: [27] Matlis, E.: Injective modules over Noetherian rings.Pac. J. Math. 8 (1958), 511-528. Zbl 0084.26601, MR 0099360, 10.2140/pjm.1958.8.511
Reference: [28] Năstăsescu, C.: Some constructions over graded rings: Applications.J. Algebra 120 (1989), 119-138. Zbl 0678.16001, MR 0977864, 10.1016/0021-8693(89)90192-0
Reference: [29] Năstăsescu, C., Oystaeyen, F. Van: Graded Ring Theory.North-Holland Mathematical Library 28. North-Holland, Amsterdam (1982). Zbl 0494.16001, MR 0676974, 10.1016/s0924-6509(08)x7017-5
Reference: [30] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings.Lecture Notes in Mathematics 1836. Springer, Berlin (2004). Zbl 1043.16017, MR 2046303, 10.1007/b94904
Reference: [31] Roos, J.-E.: Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos.Commutative Algebra London Mathematical Society Lectures Notes in Mathematics 72. Cambridge University Press, Cambridge (1981), 179-204. Zbl 0516.13013, MR 0693636, 10.1017/CBO9781107325517.016
Reference: [32] Rotman, J. J.: An Introduction to Homological Algebra.Universitext. Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977
Reference: [33] Xu, J.: Flat Covers of Modules.Lecture Notes in Mathematics 1634. Springer, Berlin (1996). Zbl 0860.16002, MR 1438789, 10.1007/BFb0094173
Reference: [34] Yang, X., Liu, Z.: FP-gr-injective modules.Math. J. Okayama Univ. 53 (2011), 83-100. Zbl 1222.16029, MR 2778885
Reference: [35] Zhao, T., Gao, Z., Huang, Z.: Relative FP-gr-injective and gr-flat modules.Int. J. Algebra Comput. 28 (2018), 959-977. Zbl 1397.16006, MR 3855003, 10.1142/S021819671850042X
.

Files

Files Size Format View
CzechMathJ_72-2022-1_7.pdf 357.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo