Previous |  Up |  Next

Article

Title: On generalized square-full numbers in an arithmetic progression (English)
Author: Sripayap, Angkana
Author: Ruengsinsub, Pattira
Author: Srichan, Teerapat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 149-163
Summary lang: English
.
Category: math
.
Summary: Let $a$ and $b\in \mathbb {N}$. Denote by $R_{a,b}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^{\alpha _1}p_2^{\alpha _2}\cdots p_r^{\alpha _r}$ has all exponents $\alpha _i$ $(1\leq i\leq r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb {N}_0:=\mathbb {N}\cup \{0\}$. All integers in $R_{a,b}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. (English)
Keyword: arithmetic progression
Keyword: character sum
Keyword: exponent pair method
Keyword: square-full number
MSC: 11B50
MSC: 11N25
MSC: 11N69
idZBL: Zbl 07511558
idMR: MR4389111
DOI: 10.21136/CMJ.2021.0362-20
.
Date available: 2022-03-25T08:28:27Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149578
.
Reference: [1] Bateman, P. T., Grosswald, E.: On a theorem of Erdős and Szekeres.Ill. J. Math. 2 (1958), 88-98. Zbl 0079.07104, MR 0095804, 10.1215/ijm/1255380836
Reference: [2] Chan, T. H.: Squarefull numbers in arithmetic progression. II.J. Number Theory 152 (2015), 90-104. Zbl 1398.11124, MR 3319056, 10.1016/j.jnt.2014.12.019
Reference: [3] Chan, T. H., Tsang, K. M.: Squarefull numbers in arithmetic progressions.Int. J. Number Theory 9 (2013), 885-901. Zbl 1290.11130, MR 3060865, 10.1142/S1793042113500048
Reference: [4] Cohen, E.: Arithmetical notes. II: An estimate of Erdős and Szekeres.Scripta Math. 26 (1963), 353-356. Zbl 0122.04901, MR 0162770
Reference: [5] Erdős, P., Szekeres, S.: Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem.Acta Szeged 7 (1934), 95-102 German \99999JFM99999 60.0893.02.
Reference: [6] Liu, H., Zhang, T.: On the distribution of square-full numbers in arithmetic progressions.Arch. Math. 101 (2013), 53-64. Zbl 1333.11094, MR 3073665, 10.1007/s00013-013-0525-0
Reference: [7] Munsch, M.: Character sums over squarefree and squarefull numbers.Arch. Math. 102 (2014), 555-563. Zbl 1297.11097, MR 3227477, 10.1007/s00013-014-0658-9
Reference: [8] Richert, H.-E.: Über die Anzahl Abelscher Gruppen gegebener Ordnung. I.Math. Z. 56 (1952), 21-32 German. Zbl 0046.25002, MR 0050577, 10.1007/BF01215034
Reference: [9] Richert, H.-E.: Über die Anzahl Abelscher Gruppen gegebener Ordnung. II.Math. Z. 58 (1953), 71-84 German. Zbl 0050.02302, MR 0054594, 10.1007/BF01174132
Reference: [10] Srichan, T.: Square-full and cube-full numbers in arithmetic progressions.Šiauliai Math. Semin. 8 (2013), 223-248. Zbl 1318.11120, MR 3265055
.

Files

Files Size Format View
CzechMathJ_72-2022-1_8.pdf 245.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo