Title:
|
Compact operators and integral equations in the $\cal {HK}$ space (English) |
Author:
|
Boonpogkrong, Varayu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
239-257 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The space $\mathcal {HK}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. In this paper, on each Fréchet space $\mathcal {HK}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal {HK}(X)$ space. It is known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal {HK}(X)$ to control-convergent sequences in the $\mathcal {HK}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved. (English) |
Keyword:
|
compact operator |
Keyword:
|
integral equation |
Keyword:
|
controlled convergence |
Keyword:
|
Henstock-Kurzweil integral |
MSC:
|
26A39 |
MSC:
|
26A42 |
idZBL:
|
Zbl 07511564 |
idMR:
|
MR4389117 |
DOI:
|
10.21136/CMJ.2021.0447-20 |
. |
Date available:
|
2022-03-25T08:31:36Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149584 |
. |
Reference:
|
[1] Alewine, J. A., Schechter, E.: Topologizing the Denjoy space by measuring equiintegrability.Real Anal. Exch. 31 (2005/06), 23-44. Zbl 1129.26003, MR 2218186, 10.14321/realanalexch.31.1.0023 |
Reference:
|
[2] Apostol, T. M.: Mathematical Analysis: A Modern Approach to Advanced Calculus.Addison-Wesley Mathematics Series. Addison Wesley, Reading (1957). Zbl 0077.05501, MR 0087718 |
Reference:
|
[3] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space.Real Anal. Exch. 21 (1995/96), 604-614. Zbl 0879.26028, MR 1407272, 10.2307/44152670 |
Reference:
|
[4] Chew, T. S.: The superposition operators in the space of Henstock-Kurzweil integrable functions.New Integrals Lecture Notes in Mathematics 1419. Springer, Berlin (1990), 19-24. Zbl 0731.26006, MR 1051917, 10.1007/BFb0083096 |
Reference:
|
[5] Chew, T. S., Lee, P. Y.: The topology of the space of Denjoy integrable functions.Bull. Aust. Math. Soc. 42 (1990), 517-524. Zbl 0715.26004, MR 1083288, 10.1017/S0004972700028689 |
Reference:
|
[6] Federson, M., Bianconi, R.: Linear Fredholm integral equations and the integral of Kurzweil.J. Appl. Anal. 8 (2002), 83-110. Zbl 1043.45010, MR 1921473, 10.1515/JAA.2002.83 |
Reference:
|
[7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints.North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). Zbl 0307.45002, MR 0499969, 10.1016/s0304-0208(08)x7017-3 |
Reference:
|
[8] Hönig, C. S.: There is no natural Banach space norm on the space of Kurzweil-Henstock- Denjoy-Perron integrable functions.Seminário Brasileiro de Análise 30 (1989), 387-397. MR 1763305 |
Reference:
|
[9] Köthe, G.: Topological Vector Spaces I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). Zbl 0179.17001, MR 0248498, 10.1007/978-3-642-64988-2 |
Reference:
|
[10] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions.Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). Zbl 0312.47041, MR 0385645 |
Reference:
|
[11] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.Series in Real Analysis 7. World Scientific, Singapore (2000). Zbl 0954.28001, MR 1763305, 10.1142/4333 |
Reference:
|
[12] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957, 10.1142/0845 |
Reference:
|
[13] Lee, P. Y.: Topology of the Denjoy space.Southeast Asian Bull. Math. 38 (2014), 655-659. Zbl 1324.26009, MR 3288602 |
Reference:
|
[14] Méndez, L. Á. G., Reyna, J. A. E., Cárdenas, M. G. R., García, J. F. E.: The closed graph theorem and the space of Henstock-Kurzweil integrable functions with the Alexiewicz norm.Abstr. Appl. Anal. 2013 (2013), Article ID 476287, 4 pages. Zbl 1267.54018, MR 3034983, 10.1155/2013/476287 |
Reference:
|
[15] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432 |
Reference:
|
[16] Morris, S. A., Noussair, E. S.: The Schauder-Tychonoff fixed point theorem and applications.Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. Zbl 0304.47049, MR 0397486 |
Reference:
|
[17] Paúl, P. J.: The space of Denjoy-Dunford integrable functions is ultrabornological.Bull. Belg. Math. Soc. - Simon Stevin 8 (2001), 75-82. Zbl 0997.46001, MR 1817532, 10.36045/bbms/1102714029 |
Reference:
|
[18] Royden, H. L.: Real Analysis.Macmillan, New York (1989). Zbl 0704.26006, MR 1013117 |
Reference:
|
[19] Sari, D. K., Lee, P. Y., Zhao, D.: A new topology on the space of primitives of Henstock-Kurzweil integrable functions.Southeast Asian Bull. Math. 42 (2018), 719-728. Zbl 1428.26016, MR 3888440 |
Reference:
|
[20] Schaefer, H. H.: Topological Vector Space.Graduate Texts in Mathematics 3. Springer, New York (1971). Zbl 0217.16002, MR 0342978, 10.1007/978-1-4684-9928-5 |
Reference:
|
[21] Schwabik, Š.: On an integral operator in the space of functions with bounded variation.Čas. Pěst. Mat. 97 (1972), 297-330. Zbl 0255.47057, MR 0450906, 10.21136/CPM.1972.108677 |
Reference:
|
[22] Thomson, B. S.: The space of Denjoy-Perron integrable functions.Real Anal. Exch. 25 (1999/2000), 711-726. Zbl 1016.26010, MR 1778525, 10.2307/44154028 |
Reference:
|
[23] Tvrdý, M.: Linear integral equations in the space of regulated functions.Math. Bohem. 123 (1998), 177-212. Zbl 0941.45001, MR 1673977, 10.21136/MB.1998.126306 |
. |