Previous |  Up |  Next

Article

Title: On the radius of spatial analyticity for the higher order nonlinear dispersive equation (English)
Author: Boukarou, Aissa
Author: Guerbati, Kaddour
Author: Zennir, Khaled
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 1
Year: 2022
Pages: 19-32
Summary lang: English
.
Category: math
.
Summary: In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019). (English)
Keyword: higher order nonlinear dispersive equation
Keyword: radius of spatial analyticity
Keyword: approximate conservation law
MSC: 35B65
MSC: 35C07
MSC: 35E15
MSC: 35Q53
idZBL: Zbl 07547239
idMR: MR4387466
DOI: 10.21136/MB.2021.0096-20
.
Date available: 2022-04-17T18:07:01Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149596
.
Reference: [1] Bona, J. L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. Zbl 1095.35039, MR 2172859, 10.1016/j.anihpc.2004.12.004
Reference: [2] Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S.: Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces.Mathematics 8 (2020), Article ID 809, 16 pages. 10.3390/math8050809
Reference: [3] Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G.: Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity.Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. Zbl 1462.35139, MR 4234317, 10.1007/s12215-020-00504-7
Reference: [4] Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G.: Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. MR 4156193, 10.1007/s11565-020-00340-8
Reference: [5] Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equations, and applications.J. Funct. Anal. 211 (2004), 173-218. Zbl 1062.35109, MR 2054622, 10.1016/S0022-1236(03)00218-0
Reference: [6] Grujić, Z., Kalisch, H.: Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions.Differ. Integral Equ. 15 (2002), 1325-1334. Zbl 1031.35124, MR 1920689
Reference: [7] Himonas, A. A., Kalisch, H., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation.Nonlinear Anal., Real World Appl. 38 (2017), 35-48. Zbl 1379.35278, MR 3670696, 10.1016/j.nonrwa.2017.04.003
Reference: [8] Jones, K. L., He, X., Chen, Y.: Existence of periodic traveling wave solution to the forced generalized nearly concentric Korteweg-de Vries equation.Int. J. Math. Math. Sci. 24 (2000), 371-377. Zbl 0961.35143, MR 1780966, 10.1155/S0161171200004336
Reference: [9] Katznelson, Y.: An Introduction to Harmonic Analysis.Dover Books on Advanced Mathematics. Dover Publications, New York (1976). Zbl 0352.43001, MR 0422992, 10.1017/CBO9781139165372
Reference: [10] Petronilho, G., Silva, P. L. da: On the radius of spatial analyticity for the modified Kawahara equation on the line.Math. Nachr. 292 (2019), 2032-2047. Zbl 1427.35220, MR 4009345, 10.1002/mana.201800394
Reference: [11] Selberg, S., Silva, D. O. da: Lower bounds on the radius of a spatial analyticity for the KdV equation.Ann. Henri Poincaré 18 (2017), 1009-1023. Zbl 1366.35161, MR 3611022, 10.1007/s00023-016-0498-1
Reference: [12] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac-KleinGordon equations.J. Differ. Equations 259 (2015), 4732-4744. Zbl 1321.35179, MR 3373420, 10.1016/j.jde.2015.06.007
Reference: [13] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation.Ann. Henri Poincaré 18 (2017), 3553-3564. Zbl 1379.35280, MR 3719502, 10.1007/s00023-017-0605-y
Reference: [14] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis.CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). Zbl 1106.35001, MR 2233925, 10.1090/cbms/106
Reference: [15] Zhang, Z., Liu, Z., Sun, M., Li, S.: Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index.J. Dyn. Differ. Equations 31 (2019), 419-433. Zbl 1421.35043, MR 3935149, 10.1007/s10884-018-9669-8
.

Files

Files Size Format View
MathBohem_147-2022-1_3.pdf 247.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo