Previous |  Up |  Next

Article

Title: Oscillation properties of second-order quasilinear difference equations with unbounded delay and advanced neutral terms (English)
Author: Chatzarakis, George E.
Author: Dinakar, Ponnuraj
Author: Selvarangam, Srinivasan
Author: Thandapani, Ethiraju
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 271-284
Summary lang: English
.
Category: math
.
Summary: We obtain some new sufficient conditions for the oscillation of the solutions of the second-order quasilinear difference equations with delay and advanced neutral terms. The results established in this paper are applicable to equations whose neutral coefficients are unbounded. Thus, the results obtained here are new and complement some known results reported in the literature. Examples are also given to illustrate the applicability and strength of the obtained conditions over the known ones. (English)
Keyword: oscillation
Keyword: quasilinear difference equation
Keyword: delay and advanced neutral terms
MSC: 39A10
MSC: 39A21
idZBL: Zbl 07547254
idMR: MR4407356
DOI: 10.21136/MB.2021.0109-20
.
Date available: 2022-04-14T13:45:18Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150332
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241, 10.1201/9781420027020
Reference: [2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory.Hindawi Publishing, New York (2005). Zbl 1084.39001, MR 2179948, 10.1155/9789775945198
Reference: [3] Agarwal, R. P., Grace, S. R., n-Bohner, E. Akı: On the oscillation of higher order neutral difference equations of mixed type.Dyn. Syst. Appl. 11 (2002), 459-469. Zbl 1046.39001, MR 1946136
Reference: [4] Chatzarakis, G. E., Miliaras, G. N.: Asymptotic behavior in neutral difference equations with several retarded arguments.Rocky Mt. J. Math. 45 (2015), 131-156. Zbl 1312.39018, MR 3334206, 10.1216/RMJ-2015-45-1-131
Reference: [5] Chatzarakis, G. E., Miliaras, G. N., Stavroulakis, I. P., Thandapani, E.: Asymptotic behaviour of non-oscillatory solutions of first-order neutral difference equations.Panam. Math. J. 23 (2013), 111-129. Zbl 1280.39005, MR 3075268
Reference: [6] Grace, S. R.: Oscillation of certain neutral difference equations of mixed type.J. Math. Anal. Appl. 224 (1998), 241-254. Zbl 0911.39006, MR 1637453, 10.1006/jmaa.1998.6001
Reference: [7] Grace, S. R., Alzabut, J.: Oscillation results for nonlinear second order difference equations with mixed neutral terms.Adv. Difference Equ. 2020 (2020), Article ID 8, 12 pages. MR 4048362, 10.1186/s13662-019-2472-y
Reference: [8] Grace, S. R., Dontha, S.: Oscillation of higher order neutral difference equations of mixed type.Dyn. Syst. Appl. 12 (2003), 521-532. Zbl 1054.39004, MR 2020481
Reference: [9] Jiang, J.: Oscillation of second order nonlinear neutral delay difference equations.Appl. Math. Comput. 146 (2003), 791-801. Zbl 1035.34074, MR 2008588, 10.1016/S0096-3003(02)00631-8
Reference: [10] Saker, S. H.: New oscillation criteria for second-order nonlinear neutral delay difference equations.Appl. Math. Comput. 142 (2003), 99-111. Zbl 1028.39003, MR 1978250, 10.1016/S0096-3003(02)00286-2
Reference: [11] Seghar, D., Thandapani, E., Pinelas, S.: Some new oscillation theorems for second order difference equations with mixed neutral terms.Br. J. Math. Comput. Sci. 8 (2015), 121-133. MR 3431692, 10.9734/BJMCS/2015/16079
Reference: [12] Selvarangam, S., Geetha, S., Thandapani, E., Pinelas, S.: Classification of solutions of second order nonlinear neutral difference equations of mixed type.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23 (2016), 433-447. Zbl 1355.39017
Reference: [13] Selvarangam, S., Thandapani, E., Pinelas, S.: Oscillation theorems for second order nonlinear neutral difference equations.J. Inequal. Appl. 2014 (2014), Article ID 417, 15 pages. Zbl 1332.39005, MR 3347707, 10.1186/1029-242X-2014-417
Reference: [14] Sun, Y. G., Saker, S. H.: Oscillation for second-order nonlinear neutral delay difference equations.Appl. Math. Comput. 163 (2005), 909-918. Zbl 1078.39014, MR 2121836, 10.1016/j.amc.2004.04.017
Reference: [15] Thandapani, E., Balasubramanian, V.: Oscillation and asymptotic behavior of second order nonlinear neutral difference equations of mixed arguments.Transylv. J. Math. Mech. 5 (2013), 149-156. MR 3158542
Reference: [16] Thandapani, E., Balasubramanian, V.: Some oscillation results for second order neutral type difference equations.Differ. Equ. Appl. 3 (2013), 319-330. Zbl 1284.39012, MR 3136342, 10.7153/dea-05-19
Reference: [17] Thandapani, E., Balasubramanian, V.: Some oscillation theorems for second order nonlinear neutral type difference equations.Malaya J. Mat. 3 (2013), 34-43. Zbl 1369.39009, MR 3136342
Reference: [18] Thandapani, E., Kavitha, N.: Oscillation theorems for second-order nonlinear neutral difference equation of mixed type.J. Math. Comput. Sci. 1 (2011), 89-102. MR 2913381
Reference: [19] Thandapani, E., Kavitha, N., Pinelas, S.: Comparison and oscillation theorem for second-order nonlinear neutral difference equations of mixed type.Dyn. Syst. Appl. 21 (2012), 83-92. Zbl 1280.39010, MR 2953239
Reference: [20] Thandapani, E., Kavitha, N., Pinelas, S.: Oscillation criteria for second-order nonlinear neutral difference equations of mixed type.Adv. Difference Equ. 2012 (2012), Article ID 4, 10 pages. Zbl 1278.39016, MR 2897466, 10.1186/1687-1847-2012-4
Reference: [21] Thandapani, E., Mahalingam, K.: Necessary and sufficient conditions for oscillation of second order neutral difference equations.Tamkang J. Math. 34 (2003), 137-145. Zbl 1044.39016, MR 1976332, 10.5556/j.tkjm.34.2003.260
Reference: [22] Thandapani, E., Mahalingam, K.: Oscillation and nonoscillation of second order neutral delay difference equations.Czech. Math. J. 53 (2003), 935-947. Zbl 1080.39503, MR 2018841, 10.1023/B:CMAJ.0000024532.03496.b2
Reference: [23] Thandapani, E., Seghar, D., Selvarangam, S.: Oscillation of second order quasilinear difference equations with several neutral terms.Transylv. J. Math. Mech. 7 (2015), 67-74. Zbl 1345.39003, MR 3373908
Reference: [24] Thandapani, E., Selvarangam, S.: Oscillation theorems for second order quasilinear neutral difference equations.J. Math. Comput. Sci. 2 (2012), 866-879. MR 2947156
Reference: [25] Thandapani, E., Selvarangam, S.: Oscillation of solutions of second order neutral type difference equations.Nonlinear Funct. Anal. Appl. 20 (2015), 329-336. Zbl 1341.39003
Reference: [26] Thandapani, E., Sundaram, P., Gyori, I.: Oscillation of second order nonlinear neutral delay difference equations.J. Math. Phys. Sci. 31 (1997), 121-132. MR 1867518
Reference: [27] Wang, D.-M., Xu, Z.-T.: Oscillation of second-order quasilinear neutral delay difference equations.Acta Math. Appl. Sin., Engl. Ser. 27 (2011), 93-104. Zbl 1242.39021, MR 2754764, 10.1007/s10255-011-0043-4
Reference: [28] Zhang, S.-Y., Wang, Q.-R.: Oscillation of second-order nonlinear neutral dynamic equations on time scales.Appl. Math. Comput. 216 (2010), 2837-2848. Zbl 1218.34112, MR 2653099, 10.1016/j.amc.2010.03.134
.

Files

Files Size Format View
MathBohem_147-2022-2_9.pdf 229.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo