Title:
|
On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms (English) |
Author:
|
Nam, Bui Duc |
Author:
|
Nhan, Nguyen Huu |
Author:
|
Ngoc, Le Thi Phuong |
Author:
|
Long, Nguyen Thanh |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
237-270 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions. (English) |
Keyword:
|
system of nonlinear wave equations of Kirchhoff-Carrier type |
Keyword:
|
Balakrishnan-Taylor term |
Keyword:
|
Faedo-Galerkin method |
Keyword:
|
local existence |
Keyword:
|
exponential decay |
MSC:
|
35L20 |
MSC:
|
35L70 |
MSC:
|
35Q74 |
MSC:
|
37B25 |
idZBL:
|
Zbl 07547253 |
idMR:
|
MR4407355 |
DOI:
|
10.21136/MB.2021.0094-20 |
. |
Date available:
|
2022-04-14T13:44:09Z |
Last updated:
|
2022-09-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150331 |
. |
Reference:
|
[1] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures.Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages. |
Reference:
|
[2] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures.4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14. |
Reference:
|
[3] Boulaaras, S.: Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipationand logarithmic source terms.Alexandria Eng. J. 59 (2020), 1059-1071. 10.1016/j.aej.2019.12.013 |
Reference:
|
[4] Boulaaras, S., Draifia, A., Zennir, K.: General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity.Math. Methods Appl. Sci. 42 (2019), 4795-4814. Zbl 1428.35037, MR 3992940, 10.1002/mma.5693 |
Reference:
|
[5] Boulaaras, S., Ouchenane, D.: General decay for a coupled Lamé system of nonlinear viscoelastic equations.Math. Methods Appl. Sci. 43 (2020), 1717-1735. Zbl 1445.35054, MR 4067018, 10.1002/mma.5998 |
Reference:
|
[6] Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel.Math. Methods Appl. Sci. 41 (2018), 6050-6069. Zbl 1415.35038, MR 3879228, 10.1002/mma.5117 |
Reference:
|
[7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity.J. Math. Anal. Appl. 226 (1998), 40-60. Zbl 0914.35081, MR 1646453, 10.1006/jmaa.1998.6057 |
Reference:
|
[8] Emmrich, E., Thalhammer, M.: A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization.Nonlinearity 24 (2011), 2523-2546. Zbl 1222.74021, MR 2819935, 10.1088/0951-7715/24/9/008 |
Reference:
|
[9] Feng, B., Kang, Y. H.: Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings.Topol. Methods Nonlinear Anal. 54 (2019), 321-343. Zbl 1437.35071, MR 4018283, 10.12775/tmna.2019.047 |
Reference:
|
[10] Freitas, M. M.: Pullback attractors for non-autonomous porous elastic system with nonlinear damping and sources terms.Math. Methods Appl. Sci. 43 (2020), 658-681. Zbl 1445.35078, MR 4056455, 10.1002/mma.5921 |
Reference:
|
[11] Freitas, M. M., Santos, M. L., Langa, J. A.: Porous elastic system with nonlinear damping and sources terms.J. Differ. Equations 264 (2018), 2970-3051. Zbl 1394.35043, MR 3737860, 10.1016/j.jde.2017.11.006 |
Reference:
|
[12] Tavares, E. H. Gomes, Silva, M. A. Jorge, Narciso, V.: Long-time dynamics of Balakrishnan-Taylor extensible beams.J. Dyn. Differ. Equations 32 (2020), 1157-1175. Zbl 1445.35060, MR 4126844, 10.1007/s10884-019-09766-x |
Reference:
|
[13] Ha, T. G.: General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping.Z. Angew. Math. Phys. 67 (2016), Article ID 32, 17 pages. Zbl 1353.35064, MR 3483881, 10.1007/s00033-016-0625-3 |
Reference:
|
[14] Ha, T. G.: Stabilization for the wave equation with variable coefficients and Balakrishnan-Taylor damping.Taiwanese J. Math. 21 (2017), 807-817. Zbl 1394.35044, MR 3684388, 10.11650/tjm/7828 |
Reference:
|
[15] Ha, T. G.: On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions.Evol. Equ. Control Theory 7 (2018), 281-291. Zbl 1415.35042, MR 3810197, 10.3934/eect.2018014 |
Reference:
|
[16] Hao, J., Hou, Y.: Stabilization for wave equation of variable coefficients with Balakrishnan-Taylor damping and source term.Comput. Math. Appl. 76 (2018), 2235-2245. Zbl 1442.35267, MR 3864576, 10.1016/j.camwa.2018.08.023 |
Reference:
|
[17] Hao, J., Wang, F.: General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay.Comput. Math. Appl. 78 (2019), 2632-2640. Zbl 1443.35095, MR 4001729, 10.1016/j.camwa.2019.04.010 |
Reference:
|
[18] Shah, S. Hyder Ali Muttaqi: Some helical flows of a Burgers fluid with fractional derivative.Meccanica 45 (2010), 143-151. Zbl 1258.76026, MR 2608341, 10.1007/s11012-009-9233-z |
Reference:
|
[19] Jamil, M., Fetecau, C.: Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary.Nonlinear Anal., Real World Appl. 11 (2010), 4302-4311. Zbl 1201.35159, MR 2683877, 10.1016/j.nonrwa.2010.05.016 |
Reference:
|
[20] Kang, J.-R., Lee, M. J., Park, S. H.: Asymptotic stability for a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay.Comput. Math. Appl. 74 (2017), 1506-1515. Zbl 1394.35280, MR 3693349, 10.1016/j.camwa.2017.06.033 |
Reference:
|
[21] Lee, M. J., Kim, D., Park, J. Y.: General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions.Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages. Zbl 1350.35129, MR 3550421, 10.1186/s13661-016-0679-3 |
Reference:
|
[22] Lee, M. J., Park, J. Y., Kang, Y. H.: Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay.Comput. Math. Appl. 70 (2015), 478-487. Zbl 1443.35098, MR 3372039, 10.1016/j.camwa.2015.05.004 |
Reference:
|
[23] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. Zbl 0189.40603, MR 0259693 |
Reference:
|
[24] Long, N. T., Ha, H. H., Ngoc, L. T. P., Triet, N. A.: Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions.Commun. Pure Appl. Anal. 19 (2020), 455-492. Zbl 1437.35468, MR 4025953, 10.3934/cpaa.2020023 |
Reference:
|
[25] Medeiros, L. A.: On some nonlinear perturbation of Kirchhoff-Carrier operator.Comput. Appl. Math. 13 (1994), 225-233. Zbl 0821.35100, MR 1326759 |
Reference:
|
[26] Mu, C., Ma, J.: On a system of nonlinear wave equations with Balakrishnan-Taylor damping.Z. Angew. Math. Phys. 65 (2014), 91-113. Zbl 1295.35309, MR 3160626, 10.1007/s00033-013-0324-2 |
Reference:
|
[27] Ngoc, L. T. P., Nhan, N. H., Nam, B. D., Long, N. T.: Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term.Lith. Math. J. 60 (2020), 225-247. Zbl 1442.35243, MR 4110669, 10.1007/s10986-020-09469-7 |
Reference:
|
[28] Qi, H., Jin, H.: Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative.Nonlinear Anal., Real World Appl. 10 (2009), 2700-2708. Zbl 1162.76006, MR 2523233, 10.1016/j.nonrwa.2008.07.008 |
Reference:
|
[29] Santos, M. L., Júnior, D. S. Almeida: On porous-elastic system with localized damping.Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. Zbl 1351.35217, MR 3494484, 10.1007/s00033-016-0622-6 |
Reference:
|
[30] Showalter, R. E.: Hilbert space methods for partial differential equations.Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). Zbl 0991.35001, MR 1302484 |
Reference:
|
[31] Tatar, N.-e., Zaraï, A.: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping.Demonstr. Math. 44 (2011), 67-90. Zbl 1227.35074, MR 2796763, 10.1515/dema-2013-0297 |
Reference:
|
[32] Tatar, N.-e., Zaraï, A.: On a Kirchhoff equation with Balakrishnan-Taylor damping and source term.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627. Zbl 1264.35244, MR 2884753 |
Reference:
|
[33] Tong, D., Zhang, X., Zhang, X.: Unsteady helical flows of a generalized Oldroyd-B fluid.J. Non-Newton. Fluid Mech. 156 (2009), 75-83. Zbl 1274.76136, MR 2523233, 10.1016/j.nonrwa.2008.07.008 |
Reference:
|
[34] Triet, N. A., Ngoc, L. T. P., Long, N. T.: On a nonlinear Kirchhoff-Carrier wave equation associated with Robin conditions.Nonlinear Anal., Real World Appl. 11 (2010), 3363-3388. Zbl 1207.35208, MR 2683795, 10.1016/j.nonrwa.2009.11.028 |
Reference:
|
[35] Zaraï, A., Tatar, N.-e.: Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping.Arch. Math., Brno 46 (2010), 157-176. Zbl 1240.35330, MR 2735903 |
. |