Previous |  Up |  Next

Article

Title: New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive (English)
Author: Zhang, Shaoxiang
Author: Chen, Huibin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 2
Year: 2022
Pages: 349-363
Summary lang: English
.
Category: math
.
Summary: We prove that there are at least two new non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics on ${\rm Sp} (l+3k)$ $(k < l)$. It implies that every compact simple Lie group ${\rm Sp} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac 14 (n-1)]$ non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics. (English)
Keyword: Einstein metric
Keyword: non-naturally reductive metric
Keyword: compact Lie group
Keyword: symplectic group
MSC: 53C25
MSC: 53C30
MSC: 65H10
idZBL: Zbl 07547208
idMR: MR4412763
DOI: 10.21136/CMJ.2021.0491-20
.
Date available: 2022-04-21T18:59:13Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150405
.
Reference: [1] Arvanitoyeorgos, A., Dzhepko, V. V., Nikonorov, Y. G.: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups.Can. J. Math. 61 (2009), 1201-1213. Zbl 1183.53037, MR 2588419, 10.4153/CJM-2009-056-2
Reference: [2] Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reductive.Geom. Dedicate 160 (2012), 261-285. Zbl 1253.53043, MR 2970054, 10.1007/s10711-011-9681-1
Reference: [3] Arvanitoyeorgos, A., Sakane, Y., Statha, M.: Einstein metrics on the symplectic group which are not naturally reductive.Current Developments in Differential Geometry and its Related Fields World Scientific, Hackensack (2016), 1-22. Zbl 1333.53053, MR 3494871, 10.1142/9789814719780_0001
Reference: [4] Besse, A. L.: Einstein Manifolds.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). Zbl 0613.53001, MR 0867684, 10.1007/978-3-540-74311-8
Reference: [5] Chen, H., Chen, Z., Deng, S.: New non-naturally reductive Einstein metrics on exceptional simple Lie groups.J. Geom. Phys. 124 (2018), 268-285. Zbl 1386.53053, MR 3754514, 10.1016/j.geomphys.2017.09.011
Reference: [6] Chen, H., Chen, Z., Deng, S.: Non-naturally reductive Einstein metrics on SO$(n)$.Manuscr. Math. 156 (2018), 127-136. Zbl 1390.53040, MR 3783569, 10.1007/s00229-017-0954-3
Reference: [7] Chen, Z., Chen, H.: Non-naturally reductive Einstein metrics on Sp$(n)$.Front. Math. China 15 (2020), 47-55. Zbl 1447.53045, MR 4074344, 10.1007/s11464-020-0818-0
Reference: [8] Chen, Z., Liang, K.: Non-naturally reductive Einstein metrics on the compact simple Lie group $F_4$.Ann. Global Anal. Geom. 46 (2014), 103-115. Zbl 1301.53042, MR 3239276, 10.1007/s10455-014-9413-5
Reference: [9] Chrysikos, I., Sakane, Y.: Non-naturally reductive Einstein metrics on exceptional Lie groups.J. Geom. Phys. 116 (2017), 152-186. Zbl 1390.53041, MR 3623653, 10.1016/j.geomphys.2017.01.030
Reference: [10] D'Atri, J. E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups.Mem. Am. Math. Soc. 215 (1979), 72 pages. Zbl 0404.53044, MR 0519928, 10.1090/memo/0215
Reference: [11] Mori, K.: Invariant Einstein Metrics on $SU(n)$ That Are Not Naturally Reductive: Master Thesis.Osaka University, Osaka (1994). English Translation: Osaka University RPM 96010 (preprint series), 1996 Japanese.
Reference: [12] Park, J.-S., Sakane, Y.: Invariant Einstein metrics on certain homogeneous spaces.Tokyo J. Math. 20 (1997), 51-61. Zbl 0884.53039, MR 1451858, 10.3836/tjm/1270042398
Reference: [13] Wang, M.: Einstein metrics from symmetry and bundle constructions.Surveys in Differential Geometry: Essays on Einstein Manifolds. Surv. Differ. Geom. VI International Press, Boston (1999), 287-325. Zbl 1003.53037, MR 1798614, 10.4310/SDG.2001.v6.n1.a11
Reference: [14] Wang, M.: Einstein metrics from symmetry and bundle constructions: A sequel.Differential Geometry: Under the Influence of S.-S. Chern Advanced Lectures in Mathematics 22. Higher Education Press/International Press, Somerville (2012), 253-309. Zbl 1262.53044, MR 3076055
Reference: [15] Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics.Invent. Math. 84 (1986), 177-194. Zbl 0596.53040, MR 0830044, 10.1007/BF01388738
Reference: [16] Yan, Z., Deng, S.: Einstein metrics on compact simple Lie groups attached to standard triples.Trans. Am. Math. Soc. 369 (2017), 8587-8605. Zbl 1433.53079, MR 3710636, 10.1090/tran/7025
Reference: [17] Zhang, S., Chen, H., Deng, S.: New non-naturally reductive Einstein metrics on Sp$(n)$.Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 887-898. MR 4245438, 10.1007/s10473-021-0315-x
.

Files

Files Size Format View
CzechMathJ_72-2022-2_3.pdf 261.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo