Title:
|
Inequalities for Taylor series involving the divisor function (English) |
Author:
|
Alzer, Horst |
Author:
|
Kwong, Man Kam |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
331-348 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|<1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} < T(q)< \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 0<q<1, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$. (English) |
Keyword:
|
divisor function |
Keyword:
|
infinite series |
Keyword:
|
inequality |
Keyword:
|
monotonicity |
Keyword:
|
$q$-digamma function |
Keyword:
|
Euler's constant |
MSC:
|
11A25 |
MSC:
|
26D15 |
MSC:
|
33D05 |
idZBL:
|
Zbl 07547207 |
idMR:
|
MR4412762 |
DOI:
|
10.21136/CMJ.2021.0464-20 |
. |
Date available:
|
2022-04-21T18:58:41Z |
Last updated:
|
2024-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150404 |
. |
Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics. Springer, New York (1976). Zbl 0335.10001, MR 0434929, 10.1007/978-1-4757-5579-4 |
Reference:
|
[2] Askey, R.: The $q$-gamma and $q$-beta functions.Appl. Anal. 8 (1978), 123-141. Zbl 0398.33001, MR 0523950, 10.1080/00036817808839221 |
Reference:
|
[3] Baxley, J. V.: Euler's constant, Taylor's formula, and slowly converging series.Math. Mag. 65 (1992), 302-313. Zbl 0780.40001, MR 1191273, 10.2307/2691241 |
Reference:
|
[4] Beckenbach, E. F., Bellman, R.: Inequalities.Ergebnisse der Mathematik und ihrer Grenzgebiete 30. Springer, Berlin (1983). Zbl 0513.26003, MR 0192009, 10.1007/978-3-642-64971-4 |
Reference:
|
[5] Clausen, T.: Beitrag zur Theorie der Reihen.J. Reine Angew. Math. 3 (1828), 92-95 German. Zbl 003.0099cj, MR 1577683, 10.1515/crll.1828.3.92 |
Reference:
|
[6] Knopp, K.: Theorie und Anwendung der unendlichen Reihen.Die Grundlehren der mathematischen Wissenschaften 2. Springer, Berlin (1964), German. Zbl 0124.28302, MR 0183997, 10.1007/978-3-642-49655-4 |
Reference:
|
[7] Krattenthaler, C., Srivastava, H. M.: Summations for basic hypergeometric series involving a $q$-analogue of the digamma function.Comput. Math. Appl. 32 (1996), 73-91. Zbl 0855.33012, MR 1398550, 10.1016/0898-1221(96)00114-9 |
Reference:
|
[8] Landau, E.: Sur la série des inverses des nombres de Fibonacci.Bull. Soc. Math. Fr. 27 (1899), 298-300 French \99999JFM99999 30.0248.02. |
Reference:
|
[9] Merca, M.: A new look on the generating function for the number of divisors.J. Number Theory 149 (2015), 57-69. Zbl 1371.11140, MR 3296001, 10.1016/j.jnt.2014.10.009 |
Reference:
|
[10] Merca, M.: Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer.J. Number Theory 160 (2016), 60-75. Zbl 1396.11123, MR 3425199, 10.1016/j.jnt.2015.08.014 |
Reference:
|
[11] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory.Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). Zbl 0862.11001, MR 1374329, 10.1007/1-4020-3658-2 |
Reference:
|
[12] Pólya, G., Szegő, G.: Aufgaben und Lehrsätze aus der Analysis II. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie.Springer, Berlin (1971), German. Zbl 0219.00003, MR 0344041, 10.1007/978-3-662-00061-8 |
Reference:
|
[13] Salem, A.: A completely monotonic function involving the $q$-gamma and $q$-digamma functions.J. Approx. Theory 164 (2012), 971-980. Zbl 1250.33005, MR 2922625, 10.1016/j.jat.2012.03.014 |
Reference:
|
[14] Salem, A.: A certain class of approximations for the $q$-digamma function.Rocky Mt. J. Math. 46 (2016), 1665-1677. Zbl 1354.30028, MR 3580805, 10.1216/rmj-2016-46-5-1665 |
Reference:
|
[15] Salem, A.: Sharp lower and upper bounds for the $q$-gamma function.Math. Inequal. Appl. 23 (2020), 855-872. Zbl 1453.33011, MR 4128957, 10.7153/mia-2020-23-69 |
Reference:
|
[16] Salem, A., Alzahrani, F.: Complete monotonicity property for two functions related to the $q$-digamma function.J. Math. Inequal. 13 (2019), 37-52. Zbl 1416.33023, MR 3928268, 10.7153/jmi-2019-13-03 |
Reference:
|
[17] Uchimura, K.: An identity for the divisor generating function arising from sorting theory.J. Comb. Theory, Ser. A 31 (1981), 131-135. Zbl 0473.05006, MR 0629588, 10.1016/0097-3165(81)90009-1 |
Reference:
|
[18] Waerden, B. L. van der: Algebra I.Heidelberger Taschenbücher 12. Springer, Berlin (1971), German. Zbl 0221.12001, MR 0069787, 10.1007/978-3-642-85527-6 |
. |