Previous |  Up |  Next

Article

Title: On the Choquet integrals associated to Bessel capacities (English)
Author: Ooi, Keng Hao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 2
Year: 2022
Pages: 433-447
Summary lang: English
.
Category: math
.
Summary: We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations. (English)
Keyword: Choquet integral
Keyword: Bessel capacity
Keyword: Hardy-Littlewood maximal function
MSC: 31C15
MSC: 42B25
idZBL: Zbl 07547213
idMR: MR4412768
DOI: 10.21136/CMJ.2021.0525-20
.
Date available: 2022-04-21T19:01:47Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150410
.
Reference: [1] Adams, D. R.: Quasi-additivity and sets of finite $L^p$-capacity.Pac. J. Math. 79 (1978), 283-291. Zbl 0399.31006, MR 0531319, 10.2140/pjm.1978.79.283
Reference: [2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4
Reference: [3] Dinculeanu, N.: Integration on Locally Compact Spaces.Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leiden (1974). Zbl 0284.28003, MR 0360981
Reference: [4] Grigor'yan, A., Verbitsky, I.: Pointwise estimates of solutions to nonlinear equations for nonlocal operators.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 20 (2020), 721-750. Zbl 07328846, MR 4105916, 10.2422/2036-2145.201802_011
Reference: [5] Kalton, N. J., Verbitsky, I. E.: Nonlinear equations and weighted norm inequalities.Trans. Am. Math. Soc. 351 (1999), 3441-3497. Zbl 0948.35044, MR 1475688, 10.1090/S0002-9947-99-02215-1
Reference: [6] Maz'ya, V. G.: Sobolev Spaces: With Applications To Elliptic Partial Differential Equations.Grundlehren der Mathematischen Wissenschaften 342. Springer, Berlin (2011). Zbl 1217.46002, MR 2777530, 10.1007/978-3-642-15564-2
Reference: [7] Maz'ya, V. G., Shaposhnikova, T. O.: Theory of Sobolev Multipliers: With Applications To Differential and Integral Operators.Grundlehren der Mathematischen Wissenschaften 337. Springer, Berlin (2009). Zbl 1157.46001, MR 2457601, 10.1007/978-3-540-69492-2
Reference: [8] Maz'ya, V. G., Verbitsky, I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers.Ark. Mat. 33 (1995), 81-115. Zbl 0834.31006, MR 1340271, 10.1007/BF02559606
Reference: [9] Ooi, K. H., Phuc, N. C.: Characterizations of predual spaces to a class of Sobolev multiplier type spaces.Available at https://arxiv.org/abs/2005.04349 (2020), 46 pages. MR 4360359
Reference: [10] Ooi, K. H., Phuc, N. C.: On a capacitary strong type inequality and related capacitary estimates.Available at https://arxiv.org/abs/2009.09291v1 (2020), 12 pages. MR 4404777
.

Files

Files Size Format View
CzechMathJ_72-2022-2_8.pdf 259.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo