Previous |  Up |  Next

Article

Title: Wiener index of graphs with fixed number of pendant or cut-vertices (English)
Author: Pandey, Dinesh
Author: Patra, Kamal Lochan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 2
Year: 2022
Pages: 411-431
Summary lang: English
.
Category: math
.
Summary: The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices. (English)
Keyword: cut-vertex
Keyword: distance
Keyword: pendant vertex
Keyword: unicyclic graph
Keyword: Wiener index
MSC: 05C05
MSC: 05C12
MSC: 05C35
idZBL: Zbl 07547212
idMR: MR4412767
DOI: 10.21136/CMJ.2022.0515-20
.
Date available: 2022-04-21T19:01:15Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150409
.
Reference: [1] Althöfer, I.: Average distances in undirected graphs and the removal of vertices.J. Comb. Theory, Ser. B 48 (1990), 140-142. Zbl 0688.05045, MR 1047559, 10.1016/0095-8956(90)90136-N
Reference: [2] Balakrishnan, R., Sridharan, N., Iyer, K. Viswanathan: Wiener index of graphs with more than one cut-vertex.Appl. Math. Lett. 21 (2008), 922-927. Zbl 1152.05322, MR 2436525, 10.1016/j.aml.2007.10.003
Reference: [3] Buckley, F., Harary, F.: Distance in Graphs.Addison-Wesley, Redwood (1990). Zbl 0688.05017, MR 1045632
Reference: [4] Dankelmann, P.: Average distance and independence number.Discrete Appl. Math. 51 (1994), 75-83. Zbl 0803.05020, MR 1279621, 10.1016/0166-218X(94)90095-7
Reference: [5] Doyle, J. K., Graver, J. E.: Mean distance in a graph.Discrete Math. 17 (1977), 147-154. Zbl 0361.05045, MR 0485476, 10.1016/0012-365X(77)90144-3
Reference: [6] Entringer, R. C., Jackson, D. E., Snyder, D. A.: Distance in graphs.Czech. Math. J. 26 (1976), 283-296. Zbl 0329.05112, MR 0543771, 10.21136/CMJ.1976.101401
Reference: [7] Gutman, I.: On distances in some bipartite graphs.Publ. Inst. Math., Nouv. Sér. 43 (1988), 3-8. Zbl 0645.05046, MR 0962249
Reference: [8] Gutman, I., Cruz, R., Rada, J.: Wiener index of Eulerian graphs.Discrete Appl. Math. 162 (2014), 247-250. Zbl 1298.05093, MR 3128526, 10.1016/j.dam.2013.08.024
Reference: [9] Jelen, F., Triesch, E.: Superdominance order and distance of trees with bounded maximum degree.Discrete Appl. Math. 125 (2003), 225-233. Zbl 1009.05052, MR 1943114, 10.1016/s0166-218X(02)00195-6
Reference: [10] Liu, H., Lu, M.: A unified approach to extremal cacti for different indices.MATCH Commun. Math. Comput. Chem. 58 (2007), 183-194. Zbl 1164.05043, MR 2335488
Reference: [11] Liu, H., Pan, X.-F.: On the Wiener index of trees with fixed diameter.MATCH Commun. Math. Comput. Chem. 60 (2008), 85-94. Zbl 1199.05092, MR 2423499
Reference: [12] Plesn{'ık, J.: On the sum of all distances in a graph or digraph.J. Graph Theory 8 (1984), 1-21. Zbl 0552.05048, MR 0732013, 10.1002/jgt.3190080102
Reference: [13] Shi, R.: The average distance of trees.Syst. Sci. Math. Sci. 6 (1993), 18-24. Zbl 0802.05036, MR 1215913
Reference: [14] Stevanović, D.: Maximizing Wiener index of graphs with fixed maximum degree.MATCH Commun. Math. Comput. Chem. 60 (2008), 71-83. Zbl 1274.05137, MR 2423498
Reference: [15] Tan, S.-W.: The minimum Wiener index of unicyclic graphs with a fixed diameter.J. Appl. Math. Comput. 56 (2018), 93-114. Zbl 1390.05045, MR 3770377, 10.1007/s12190-016-1063-2
Reference: [16] Tan, S.-W., Wang, Q.-L., Lin, Y.: The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices.J. Appl. Math. Comput. 55 (2017), 1-24. Zbl 1373.05056, MR 3694934, 10.1007/s12190-016-1022-y
Reference: [17] Wang, H.: The extremal values of the Wiener index of a tree with given degree sequence.Discrete Appl. Math. 156 (2008), 2647-2654. Zbl 1155.05020, MR 2451087, 10.1016/j.dam.2007.11.005
Reference: [18] West, D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River (1996). Zbl 0845.05001, MR 1367739
Reference: [19] Wiener, H.: Structural determination of paraffin boiling points.J. Am. Chem. Soc. 69 (1947), 17-20. 10.1021/ja01193a005
Reference: [20] Winkler, P.: Mean distance in a tree.Discrete Appl. Math. 27 (1990), 179-185. Zbl 0742.05032, MR 1055599, 10.1016/0166-218X(90)90137-2
Reference: [21] Yeh, Y.-N., Gutman, I.: On the sum of all distances in composite graphs.Discrete Math. 135 (1994), 359-365. Zbl 0814.05033, MR 1310892, 10.1016/0012-365X(93)E0092-I
Reference: [22] Yu, G., Feng, L.: On the Wiener index of unicyclic graphs with given girth.Ars Comb. 94 (2010), 361-369. Zbl 1238.92073, MR 2599747
Reference: [23] Zhang, X.-D., Xiang, Q.-Y., Xu, L.-Q., Pan, R.-Y.: The Wiener index of trees with given degree sequences.MATCH Commun. Math. Comput. Chem. 60 (2008), 623-644. Zbl 1195.05022, MR 2457876
.

Files

Files Size Format View
CzechMathJ_72-2022-2_7.pdf 334.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo