Previous |  Up |  Next

Article

Title: Spectral discretization of Darcy equations coupled with Navier-Stokes equations by vorticity-velocity-pressure formulation (English)
Author: Mabrouki, Yassine
Author: Satouri, Jamil
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 4
Year: 2022
Pages: 445-470
Summary lang: English
.
Category: math
.
Summary: We consider a model coupling the Darcy equations in a porous medium with the Navier-Stokes equations in the cracks, for which the coupling is provided by the pressure's continuity on the interface. We discretize the coupled problem by the spectral element method combined with a nonoverlapping domain decomposition method. We prove the existence of solution for the discrete problem and establish an error estimation. We conclude with some numerical tests confirming the results of our analysis. (English)
Keyword: Navier-Stokes equation
Keyword: Darcy equation
Keyword: spectral element
MSC: 35Q30
MSC: 65F08
MSC: 65N30
MSC: 65N55
MSC: 76S05
idZBL: Zbl 07584080
idMR: MR4444787
DOI: 10.21136/AM.2022.0372-20
.
Date available: 2022-06-28T13:21:07Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/150437
.
Reference: [1] Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains.Math. Methods Appl. Sci. 21 (1998), 823-864. Zbl 0914.35094, MR 1626990, 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
Reference: [2] Aouadi, S. M., Bernardi, C., Satouri, J.: Mortar spectral element discretization of the Stokes problem in axisymmetric domains.Numer. Methods Partial Differ. Equations 30 (2014), 44-73. Zbl 1299.76049, MR 3149400, 10.1002/num.21794
Reference: [3] Aouadi, S. M., Satouri, J.: Mortar spectral method in axisymmetric domains.ESAIM, Math. Model. Numer. Anal. 47 (2013), 33-55. Zbl 1277.65101, MR 2968694, 10.1051/m2an/2012018
Reference: [4] Aza{ï}ez, M., Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations.Numer. Math. 104 (2006), 1-26. Zbl 1138.76052, MR 2232000, 10.1007/s00211-006-0684-z
Reference: [5] Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling.Numer. Math. 115 (2010), 195-227. Zbl 1423.35304, MR 2606960, 10.1007/s00211-009-0279-6
Reference: [6] Beavers, S. G., Joseph, D. D.: Boundary conditions at a naturally permeable wall.J. Fluid Mech. 30 (1967), 197-207. 10.1017/S0022112067001375
Reference: [7] Bernardi, C., Rebollo, T. Chacón, Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations.ESAIM, Math. Model. Numer. Anal. 42 (2008), 375-410. Zbl 1138.76044, MR 2423791, 10.1051/m2an:2008009
Reference: [8] Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem.SIAM J. Numer. Anal. 44 (2006), 826-850. Zbl 1117.65159, MR 2218971, 10.1137/050622687
Reference: [9] Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev world.Available at https://hal.archives-ouvertes.fr/hal-00153795v2 (2007), 112 pages.
Reference: [10] Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous media with cracks.ESAIM, Math. Model. Numer. Anal. 39 (2005), 7-35. Zbl 1079.76041, MR 2136198, 10.1051/m2an:2005007
Reference: [11] Bernardi, C., Maday, Y.: Spectral Methods.Handbook of Numerical Analysis. Volume 5 P. G. Ciarlet, J. L. Lions North-Holland, Amsterdam (1997), 209-485. Zbl 0884.65001, MR 1470226, 10.1016/S1570-8659(97)80003-8
Reference: [12] Brezzi, F., Rappaz, J., Raviart, P. A.: Finite dimensional approximation of nonlinear problems. 1. Branches of nonsingular solutions.Numer. Math. 36 (1980), 1-25. Zbl 0488.65021, MR 0595803, 10.1007/BF01395985
Reference: [13] Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition.Commun. Math. Sci. 8 (2010), 1-25. Zbl 1189.35244, MR 2655899, 10.4310/CMS.2010.v8.n1.a2
Reference: [14] Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier-Stokes and Darcy equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 3806-3820. Zbl 1230.76023, MR 2557499, 10.1016/j.cma.2009.08.012
Reference: [15] Costabel, M., Dauge, M.: Espaces fonctionnels Maxwell: Les gentils les méchants et les singularités.Available at \brokenlink{https://www.yumpu.com/fr/document/read/7814987/espaces-{fonctionnels-maxwell-universite-de-rennes-1}} (1998), 6 pages French.
Reference: [16] Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non-smooth domains.Topics in Computational Wave Propagation: Direct and Inverse Problems Springer, Berlin (2003), 125-161. Zbl 1116.78002, MR 2032869, 10.1007/978-3-642-55483-4_4
Reference: [17] Discacciati, M., Quarteroni, A.: Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation.Rev. Mat. Complut. 22 (2009), 315-426. Zbl 1172.76050, MR 2553940, 10.5209/rev_REMA.2009.v22.n2.16263
Reference: [18] Dubois, F.: Vorticity-velocity-pressure formulation for the Stokes problem.Math. Methods Appl. Sci. 25 (2002), 1091-1119. Zbl 1099.76049, MR 1924283, 10.1002/mma.328
Reference: [19] Dubois, F., Salaün, M., Salmon, S.: Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem.J. Math. Pures Appl., IX. Sér. 82 (2003), 1395-1451. Zbl 1070.76014, MR 2020806, 10.1016/j.matpur.2003.09.002
Reference: [20] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [21] Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition.SIAM J. Numer. Anal. 47 (2009), 2052-2089. Zbl 1406.76082, MR 2519594, 10.1137/070686081
Reference: [22] Logvinov, O. A., Malashin, A. A.: Generalized Navier-Stokes-Darcy model.Eur. J. Mech., B, Fluids 63 (2017), 100-105. Zbl 1408.76145, MR 3623140, 10.1016/j.euromechflu.2017.01.019
Reference: [23] Mabrouki, Y., Aouadi, S. M., Satouri, J.: Spectral discretization of Darcy equations coupled with Stokes equations by vorticity-velocity-pressure formulation.Numer. Methods Partial Differ. Equations 33 (2017), 1628-1651. Zbl 1394.65156, MR 3683526, 10.1002/num.22157
Reference: [24] Mabrouki, Y., Satouri, J.: Analysis of a Navier-Stokes-Darcy coupling problem.Adv. Pure Appl. Math. 7 (2016), 177-188. Zbl 1342.76031, MR 3518354, 10.1515/apam-2016-0017
Reference: [25] Mikelic, A., Jäger, W.: On the interface boundary condition of Beavers, Joseph and Saffman.SIAM J. Appl. Math. 60 (2000), 1111-1127. Zbl 0969.76088, MR 1760028, 10.1137/S003613999833678X
Reference: [26] Saffman, P. G.: On the boundary condition at the interface of a porous medium.Stud. Appl. Math. 50 (1971), 93-101. Zbl 0271.76080, 10.1002/sapm197150293
Reference: [27] Talenti, G.: Best constant in Sobolev inequality.Ann. Mat. Pura Appl., IV. Ser. 110 (1976), 353-372. Zbl 0353.46018, MR 0463908, 10.1007/BF02418013
.

Files

Files Size Format View
AplMat_67-2022-4_3.pdf 619.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo