Previous |  Up |  Next

Article

Title: Asymptotic and exponential decay in mean square for delay geometric Brownian motion (English)
Author: Haškovec, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 4
Year: 2022
Pages: 471-483
Summary lang: English
.
Category: math
.
Summary: We derive sufficient conditions for asymptotic and monotone exponential decay in mean square of solutions of the geometric Brownian motion with delay. The conditions are written in terms of the parameters and are explicit for the case of asymptotic decay. For exponential decay, they are easily resolvable numerically. The analytical method is based on construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate for the square mean (exponential decay). (English)
Keyword: geometric Brownian motion
Keyword: delay
Keyword: asymptotic decay
Keyword: exponential decay
MSC: 34K11
MSC: 34K25
MSC: 34K50
MSC: 60H10
idZBL: Zbl 07584081
idMR: MR4444788
DOI: 10.21136/AM.2021.0358-20
.
Date available: 2022-06-28T13:21:46Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/150438
.
Reference: [1] Appleby, J. A. D., Mao, X., Riedle, M.: Geometric Brownian motion with delay: Mean square characterisation.Proc. Am. Math. Soc. 137 (2009), 339-348. Zbl 1156.60045, MR 2439458, 10.1090/S0002-9939-08-09490-2
Reference: [2] Barbălat, I.: Systèmes d'équations différentielles d'oscillations nonlinéaires.\kern-.84ptAcad. Républ. Popul. Roum., Rev. Math. Pur. Appl. 4 (1959), 267-270 French. Zbl 0090.06601, MR 0111896
Reference: [3] El'sgol'ts, L. E., Norkin, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments.Mathematics in Science and Engineering. Academic Press, New York (1973). Zbl 0287.34073, MR 0352647, 10.1016/s0076-5392(08)x6170-3
Reference: [4] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay.SIAM J. Appl. Math. 76 (2016), 1535-1557. Zbl 1345.60063, MR 3534479, 10.1137/15M1030467
Reference: [5] Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems.Eur. J. Control 20 (2014), 271-283. Zbl 1403.93158, MR 3283869, 10.1016/j.ejcon.2014.10.001
Reference: [6] Guillouzic, S.: Fokker-Planck Approach to Stochastic Delay Differential Equations: Thesis.University of Ottawa, Ottawa (2000).
Reference: [7] Győri, I., Ladas, G.: Oscillation Theory of Delay Differential Equations: With Applications.Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). Zbl 0780.34048, MR 1168471
Reference: [8] Hull, J. C.: Options, Futures, and other Derivatives.Prentice-Hall, Upper Saddle River (2003). Zbl 1087.91025
Reference: [9] Kolmanovskij, V., Myshkis, A.: Applied Theory of Functional Differential Equations.Mathematics and Its Applications. Soviet Series 85. Kluwer Academic Publishers, Dordrecht (1992). Zbl 0785.34005, MR 1256486, 10.1007/978-94-015-8084-7
Reference: [10] Kolmanovskij, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations.Mathematics and Its Applications (Dordrecht) 463. Kluwer Academic Publishers, Dordrecht (1999). Zbl 0917.34001, MR 1680144, 10.1007/978-94-017-1965-0
Reference: [11] Mao, X.: Stochastic Differential Equations and Applications.Ellis Horwood Series in Mathematics and Its Applications. Horwood Publishing, Chichester (1997). Zbl 0892.60057, MR 1475218, 10.1533/9780857099402
Reference: [12] Mao, X.: Stability and stabilisation of stochastic differential delay equations.IET Control Theory Appl. 1 (2007), 1551-1566. MR 2352175, 10.1049/iet-cta:20070006
Reference: [13] Mohammed, S.-E. A., Scheutzow, M. K. R.: Lyapunov exponents of linear stochastic functional differential equations. II: Examples and case studies.Ann. Probab. 25 (1997), 1210-1240. Zbl 0885.60043, MR 1457617, 10.1214/aop/1024404511
Reference: [14] ksendal, B. Ø: Stochastic Differential Equations: An Introduction with Applications.Universitext. Springer, Berlin (2003). Zbl 1025.60026, MR 2001996, 10.1007/978-3-642-14394-6
Reference: [15] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences.Texts in Applied Mathematics 57. Springer, New York (2011). Zbl 1227.34001, MR 2724792, 10.1007/978-1-4419-7646-8
Reference: [16] Sun, J., Chen, J.: A survey on Lyapunov-based methods for stability of linear time-delay systems.Front. Comput. Sci. 11 (2017), 555-567. Zbl 1405.34046, 10.1007/s11704-016-6120-3
.

Files

Files Size Format View
AplMat_67-2022-4_4.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo