Title:
|
Endomorphism kernel property for finite groups (English) |
Author:
|
Ghumashyan, Heghine |
Author:
|
Guričan, Jaroslav |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
347-358 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A group $G$ has the endomorphism kernel property (EKP) if every congruence relation $\theta $ on $G$ is the kernel of an endomorphism on $G$. In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP. (English) |
Keyword:
|
endomorphism kernel property |
Keyword:
|
nilpotent group |
Keyword:
|
$p$-group |
MSC:
|
08A35 |
MSC:
|
20D15 |
MSC:
|
20K01 |
MSC:
|
20K27 |
MSC:
|
20K30 |
idZBL:
|
Zbl 07584129 |
idMR:
|
MR4482310 |
DOI:
|
10.21136/MB.2021.0171-20 |
. |
Date available:
|
2022-09-05T09:38:11Z |
Last updated:
|
2022-12-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151012 |
. |
Reference:
|
[1] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and de Morgan algebras.Commun. Algebra 32 (2004), 2225-2242. Zbl 1060.06018, MR 2100466, 10.1081/agb-120037216 |
Reference:
|
[2] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras.Sci. Math. Jpn. 76 (2013), 227-234. Zbl 1320.06009, MR 3330070 |
Reference:
|
[3] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras.Commun. Algebra 36 (2008), 1682-1694. Zbl 1148.06005, MR 2424259, 10.1080/00927870801937240 |
Reference:
|
[4] Fang, J.: The strong endomorphism kernel property in double MS-algebras.Stud. Log. 105 (2017), 995-1013. Zbl 1421.06003, MR 3704306, 10.1007/s11225-017-9722-3 |
Reference:
|
[5] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras.Southeast Asian Bull. Math. 37 (2013), 491-497. Zbl 1299.06017, MR 3134913 |
Reference:
|
[6] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property.Algebra Univers. 70 (2013), 393-401. Zbl 1305.06004, MR 3127981, 10.1007/s00012-013-0254-z |
Reference:
|
[7] Fang, J., Sun, Z.-J.: Finite abelian groups with the strong endomorphism kernel property.Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. Zbl 07343749, MR 4145699, 10.1007/s10114-020-9444-8 |
Reference:
|
[8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras.JP J. Algebra Number Theory Appl. 14 (2009), 51-64. Zbl 1191.06007, MR 2548439 |
Reference:
|
[9] Group, GAP: GAP - Groups, Algorithms, and Programming, Version 4.10.2.Available at https://www.gap-system.org/. |
Reference:
|
[10] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$.JP J. Algebra Number Theory Appl. 25 (2012), 69-90. Zbl 1258.06002, MR 2976467 |
Reference:
|
[11] Guričan, J.: A note on the endomorphism kernel property.JP J. Algebra Number Theory Appl. 33 (2014), 133-139. Zbl 1302.08004 |
Reference:
|
[12] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras.JP J. Algebra Number Theory Appl. 36 (2015), 241-258. Zbl 1333.06025, 10.17654/JPANTAJun2015_241_258 |
Reference:
|
[13] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular $p$-algebras and distributive lattices.Algebra Univers. 75 (2016), 243-255. Zbl 1348.06008, MR 3515400, 10.1007/s00012-016-0370-7 |
Reference:
|
[14] Halušková, E.: Strong endomofphism kernel property for monounary algebras.Math. Bohem. 143 (2018), 161-171. Zbl 06890412, MR 3831484, 10.21136/mb.2017.0056-16 |
Reference:
|
[15] Halušková, E.: Some monounary algebras with EKP.Math. Bohem. 145 (2020), 401-414. Zbl 07286021, MR 4221842, 10.21136/MB.2019.0128-18 |
Reference:
|
[16] Kaarli, K., Pixley, A. F.: Polynomial Completeness in Algebraic Systems.Chapman & Hall/CRC, Boca Raton (2001). Zbl 0964.08001, MR 1888967, 10.1201/9781482285758 |
Reference:
|
[17] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction.Universitext. Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433 |
. |