Previous |  Up |  Next

Article

Title: Endomorphism kernel property for finite groups (English)
Author: Ghumashyan, Heghine
Author: Guričan, Jaroslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 347-358
Summary lang: English
.
Category: math
.
Summary: A group $G$ has the endomorphism kernel property (EKP) if every congruence relation $\theta $ on $G$ is the kernel of an endomorphism on $G$. In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP. (English)
Keyword: endomorphism kernel property
Keyword: nilpotent group
Keyword: $p$-group
MSC: 08A35
MSC: 20D15
MSC: 20K01
MSC: 20K27
MSC: 20K30
idZBL: Zbl 07584129
idMR: MR4482310
DOI: 10.21136/MB.2021.0171-20
.
Date available: 2022-09-05T09:38:11Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151012
.
Reference: [1] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and de Morgan algebras.Commun. Algebra 32 (2004), 2225-2242. Zbl 1060.06018, MR 2100466, 10.1081/agb-120037216
Reference: [2] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras.Sci. Math. Jpn. 76 (2013), 227-234. Zbl 1320.06009, MR 3330070
Reference: [3] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras.Commun. Algebra 36 (2008), 1682-1694. Zbl 1148.06005, MR 2424259, 10.1080/00927870801937240
Reference: [4] Fang, J.: The strong endomorphism kernel property in double MS-algebras.Stud. Log. 105 (2017), 995-1013. Zbl 1421.06003, MR 3704306, 10.1007/s11225-017-9722-3
Reference: [5] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras.Southeast Asian Bull. Math. 37 (2013), 491-497. Zbl 1299.06017, MR 3134913
Reference: [6] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property.Algebra Univers. 70 (2013), 393-401. Zbl 1305.06004, MR 3127981, 10.1007/s00012-013-0254-z
Reference: [7] Fang, J., Sun, Z.-J.: Finite abelian groups with the strong endomorphism kernel property.Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. Zbl 07343749, MR 4145699, 10.1007/s10114-020-9444-8
Reference: [8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras.JP J. Algebra Number Theory Appl. 14 (2009), 51-64. Zbl 1191.06007, MR 2548439
Reference: [9] Group, GAP: GAP - Groups, Algorithms, and Programming, Version 4.10.2.Available at https://www.gap-system.org/.
Reference: [10] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$.JP J. Algebra Number Theory Appl. 25 (2012), 69-90. Zbl 1258.06002, MR 2976467
Reference: [11] Guričan, J.: A note on the endomorphism kernel property.JP J. Algebra Number Theory Appl. 33 (2014), 133-139. Zbl 1302.08004
Reference: [12] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras.JP J. Algebra Number Theory Appl. 36 (2015), 241-258. Zbl 1333.06025, 10.17654/JPANTAJun2015_241_258
Reference: [13] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular $p$-algebras and distributive lattices.Algebra Univers. 75 (2016), 243-255. Zbl 1348.06008, MR 3515400, 10.1007/s00012-016-0370-7
Reference: [14] Halušková, E.: Strong endomofphism kernel property for monounary algebras.Math. Bohem. 143 (2018), 161-171. Zbl 06890412, MR 3831484, 10.21136/mb.2017.0056-16
Reference: [15] Halušková, E.: Some monounary algebras with EKP.Math. Bohem. 145 (2020), 401-414. Zbl 07286021, MR 4221842, 10.21136/MB.2019.0128-18
Reference: [16] Kaarli, K., Pixley, A. F.: Polynomial Completeness in Algebraic Systems.Chapman & Hall/CRC, Boca Raton (2001). Zbl 0964.08001, MR 1888967, 10.1201/9781482285758
Reference: [17] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction.Universitext. Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433
.

Files

Files Size Format View
MathBohem_147-2022-3_5.pdf 236.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo