Previous |  Up |  Next

Article

Title: Direct summands of Goldie extending elements in modular lattices (English)
Author: Shroff, Rupal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 359-368
Summary lang: English
.
Category: math
.
Summary: In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained. (English)
Keyword: modular lattice
Keyword: direct summand
Keyword: Goldie extending element
MSC: 06B10
MSC: 06C05
idZBL: Zbl 07584130
idMR: MR4482311
DOI: 10.21136/MB.2021.0181-20
.
Date available: 2022-09-05T09:38:41Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151013
.
Reference: [1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules.Commun. Algebra 37 (2009), 663-683. Zbl 1214.16005, MR 2493810, 10.1080/00927870802254843
Reference: [2] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9
Reference: [3] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices.Prentice Hall, Engelwood Cliffs (1973). Zbl 0494.06001
Reference: [4] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman Research Notes in Mathematics Series 313. Longman Scientific, Harlow (1994). Zbl 0841.16001, MR 1312366
Reference: [5] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (1998). Zbl 0909.06002, MR 1670580, 10.1007/978-3-0348-7633-9
Reference: [6] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31 (1984), 47-54. Zbl 0528.16010, MR 0738204, 10.1016/0022-4049(84)90075-6
Reference: [7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules.Houston J. Math. 19 (1993), 523-532. Zbl 0802.16006, MR 1251607
Reference: [8] Nimbhorkar, S. K., Shroff, R. C.: Ojective ideals in modular lattices.Czech. Math. J. 65 (2015), 161-178. Zbl 1338.06004, MR 3336031, 10.1007/s10587-015-0166-5
Reference: [9] Nimbhorkar, S. K., Shroff, R. C.: Goldie extending elements in modular lattices.Math. Bohem. 142 (2017), 163-180. Zbl 1424.06028, MR 3660173, 10.21136/MB.2016.0049-14
Reference: [10] Tercan, A., Yücel, C. C.: Module Theory: Extending Modules and Generalizations.Frontiers in Mathematics. Birkhäuser, Basel (2016). Zbl 1368.16002, MR 3468915, 10.1007/978-3-0348-0952-8
Reference: [11] Wu, D., Wang, Y.: Two open questions on Goldie extending modules.Commun. Algebra 40 (2012), 2685-2692. Zbl 1253.16004, MR 2968904, 10.1080/00927872.2011.551902
.

Files

Files Size Format View
MathBohem_147-2022-3_6.pdf 205.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo