Full entry |
PDF
(0.4 MB)
Feedback

fuzzy optimization; minimizing a linear objective function; maximizing a linear objective function; fuzzy relational equations; system of equations; fuzzy relational inequalities; system of inequalities; $\max -\ast $ composition; solution family; minimal solutions

References:

[1] Belohlavek, R.: **Fuzzy Relational Systems. Foundations and Principles**. Academic Publishers, Kluwer New York 2002.

[2] Czogała, E., Drewniak, J., Pedrycz, W.: **Fuzzy relation equations on a finite set**. Fuzzy Sets Systems 7 (1982), 89-101. DOI | MR 0635357

[3] Drewniak, J.: **Fuzzy relation equations and inequalities**. Fuzzy Sets Systems 14 (1984), 237-247. DOI | MR 0768110

[4] Drewniak, J.: **Fuzzy Relation Calculus**. Silesian University, Katowice 1989. MR 1009161

[5] Drewniak, J., Matusiewicz, Z.: **Fuzzy equations $\max-\ast$ with conditionally cancellative operations**. Inform. Sci. 206 (2012), 18-29. DOI | MR 2930162

[6] Fang, S. Ch., Li, G.: **Solving fuzzy relation equations with a linear objective function**. Fuzzy Sets Systems 103 (1999), 107-113 MR 1674026 | Zbl 0933.90069

[7] Guo, F., Pang, L.-P., Meng, D., Xia, Z.-Q.: **An algorithm for solving optimization problems with fuzzy relational inequality constraints**. Inform. Sci. 252 (2011), 20-31. DOI | MR 3123917

[8] Guu, S.-M., Wu, Y. K.: **Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint**. Fuzzy Sets Systems 161 (2010), 285-297. DOI | MR 2566245 | Zbl 1190.90297

[9] Han, S. Ch., Li, H.-X., Wang, J.-Y.: **Resolution of finite fuzzy relation equations based on strong pseudo-$t$-norms**. Appl. Math. Lett. 19 (2006), 752-757. DOI | MR 2232250

[10] Higashi, M., Klir, G. J.: **Resolution of finite fuzzy relation equations**. Fuzzy Sets Systems 13 (1984), 65-82 DOI 10.1016/0165-0114(84)90026-5 | MR 0747391

[11] Khorram, E., Zarei, H.: **Multi-objective optimization problems with fuzzy relation equation constraints regarding max-average composition**. Math. Comput. Modell. 5 (2009), 49, 856-867. DOI | MR 2495003

[12] Klement, E. P., Mesiar, R., Pap, E.: **Triangular Norms**. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041

[13] Lee, H.-C., Guu, S.-M.: **On the optimal three-tier multimedia streaming services**. Fuzzy Optimization and Decision Making 2 (3) (2002), 31-39. DOI

[14] Li, S.-Ch., Fang, P.: **A survey on fuzzy relational equations, part I: classification and solvability**. Fuzzy Optim. Decision Making 8 (2009), 2, 179-229. DOI | MR 2511474

[15] Liu, Ch.-Ch., Lur, Y.-Y., Wu, Y.-K.: **Linear optimization of bipolar fuzzy relational equations with max-Lukasiewicz composition**. Inform. Sci. 360 (2016), 149-162. DOI

[16] Matusiewicz, Z., Drewniak, J.: **Increasing continuous operations in fuzzy $\max-\ast$ equations and inequalities**. Fuzzy Sets Systems 231 (2013), 120-133. DOI | MR 3118539

[17] Molai, A. A.: **Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints**. Math. Comput. Modell. 51 (2010), 9-10, 1240-1250. DOI | MR 2608910

[18] Peeva, K., Kyosev, Y.: **Fuzzy Relational Calculus: Theory, Applications and Software**. Advanced Fuzzy Systems - Applications and Theory, World Scientific, Singapore 2004. DOI | MR 2379415 | Zbl 1083.03048

[19] Qin, Z., Liu, X., Cao, B.-Y.: **Multi-level linear programming subject to max-product fuzzy relation equalities**. In: International Workshop on Mathematics and Decision Science 2018. DOI

[20] Qu, X., Wang, X.-P.: **Minimization of linear objective functions under the constraints expressed by a system of fuzzy relation equations**. Inform. Sci. 178 (2008), 17, 3482-3490. DOI | MR 2436417

[21] Sanchez, E.: **Resolution of composite fuzzy relation equations**. Inform. Control 30 (1976), 38-48. DOI | MR 0437410

[22] Shieh, B.-S.: **Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint**. Inform. Sci. 161 (2011), 285-297. DOI | MR 2566245

[23] Xiao, G., Zhu, T.-X., Chen, Y., Yang, X.: **Linear Searching Method for Solving Approximate Solution to System of Max-Min Fuzzy Relation Equations With Application in the Instructional Information Resources Allocation**. In: IEEE Access 7 (2019), 65019-65028. DOI

[24] Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: **Latticized linear programming subject to max-product fuzzy relation inequalities with application in wireless communication**. Inform. Sci. 358(C) (2016), 44-55. DOI

[25] Zadeh, L. A.: **Similarity relations and fuzzy orderings**. Inform. Sci. 3 (1971), 177-200. DOI | MR 0297650

[26] Zhou, X.-G., Yang, X.-P., Cao, B.-Y.: **Posynomial geometric programming problem subject to max–min fuzzy relation equations**. Inform. Sci. 328 (2016), 15-25. DOI