Previous |  Up |  Next

Article

Title: Minimizing and maximizing a linear objective function under a fuzzy $\max -\ast $ relational equation and an inequality constraint (English)
Author: Matusiewicz, Zofia
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 320-334
Summary lang: English
.
Category: math
.
Summary: This paper provides an extension of results connected with the problem of the optimization of a linear objective function subject to $\max-\ast$ fuzzy relational equations and an inequality constraint, where $\ast$ is an operation. This research is important because the knowledge and the algorithms presented in the paper can be used in various optimization processes. Previous articles describe an important problem of minimizing a linear objective function under a fuzzy $\max-\ast$ relational equation and an inequality constraint, where $\ast$ is the $t$-norm or mean. The authors present results that generalize this outcome, so the linear optimization problem can be used with any continuous increasing operation with a zero element where $\ast$ includes in particular the previously studied operations. Moreover, operation $\ast$ does not need to be a t-norm nor a pseudo-$t$-norm. Due to the fact that optimal solutions are constructed from the greatest and minimal solutions of a $\max-\ast$ relational equation or inequalities, this article presents a method to compute them. We note that the linear optimization problem is valid for both minimization and maximization problems. Therefore, for the optimization problem, we present results to find the largest and the smallest value of the objective function. To illustrate this problem a numerical example is provided. (English)
Keyword: fuzzy optimization
Keyword: minimizing a linear objective function
Keyword: maximizing a linear objective function
Keyword: fuzzy relational equations
Keyword: system of equations
Keyword: fuzzy relational inequalities
Keyword: system of inequalities
Keyword: $\max -\ast $ composition
Keyword: solution family
Keyword: minimal solutions
MSC: 03E72
MSC: 15A06
MSC: 15A39
MSC: 46N10
MSC: 90C05
idZBL: Zbl 07613048
idMR: MR4494094
DOI: 10.14736/kyb-2022-3-0320
.
Date available: 2022-10-06T14:44:38Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151033
.
Reference: [1] Belohlavek, R.: Fuzzy Relational Systems. Foundations and Principles..Academic Publishers, Kluwer New York 2002.
Reference: [2] Czogała, E., Drewniak, J., Pedrycz, W.: Fuzzy relation equations on a finite set..Fuzzy Sets Systems 7 (1982), 89-101. MR 0635357,
Reference: [3] Drewniak, J.: Fuzzy relation equations and inequalities..Fuzzy Sets Systems 14 (1984), 237-247. MR 0768110,
Reference: [4] Drewniak, J.: Fuzzy Relation Calculus..Silesian University, Katowice 1989. MR 1009161
Reference: [5] Drewniak, J., Matusiewicz, Z.: Fuzzy equations $\max-\ast$ with conditionally cancellative operations..Inform. Sci. 206 (2012), 18-29. MR 2930162,
Reference: [6] Fang, S. Ch., Li, G.: Solving fuzzy relation equations with a linear objective function..Fuzzy Sets Systems 103 (1999), 107-113 Zbl 0933.90069, MR 1674026
Reference: [7] Guo, F., Pang, L.-P., Meng, D., Xia, Z.-Q.: An algorithm for solving optimization problems with fuzzy relational inequality constraints..Inform. Sci. 252 (2011), 20-31. MR 3123917,
Reference: [8] Guu, S.-M., Wu, Y. K.: Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint..Fuzzy Sets Systems 161 (2010), 285-297. Zbl 1190.90297, MR 2566245,
Reference: [9] Han, S. Ch., Li, H.-X., Wang, J.-Y.: Resolution of finite fuzzy relation equations based on strong pseudo-$t$-norms..Appl. Math. Lett. 19 (2006), 752-757. MR 2232250,
Reference: [10] Higashi, M., Klir, G. J.: Resolution of finite fuzzy relation equations..Fuzzy Sets Systems 13 (1984), 65-82 MR 0747391, 10.1016/0165-0114(84)90026-5
Reference: [11] Khorram, E., Zarei, H.: Multi-objective optimization problems with fuzzy relation equation constraints regarding max-average composition..Math. Comput. Modell. 5 (2009), 49, 856-867. MR 2495003,
Reference: [12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [13] Lee, H.-C., Guu, S.-M.: On the optimal three-tier multimedia streaming services..Fuzzy Optimization and Decision Making 2 (3) (2002), 31-39.
Reference: [14] Li, S.-Ch., Fang, P.: A survey on fuzzy relational equations, part I: classification and solvability..Fuzzy Optim. Decision Making 8 (2009), 2, 179-229. MR 2511474,
Reference: [15] Liu, Ch.-Ch., Lur, Y.-Y., Wu, Y.-K.: Linear optimization of bipolar fuzzy relational equations with max-Lukasiewicz composition..Inform. Sci. 360 (2016), 149-162.
Reference: [16] Matusiewicz, Z., Drewniak, J.: Increasing continuous operations in fuzzy $\max-\ast$ equations and inequalities..Fuzzy Sets Systems 231 (2013), 120-133. MR 3118539,
Reference: [17] Molai, A. A.: Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints..Math. Comput. Modell. 51 (2010), 9-10, 1240-1250. MR 2608910,
Reference: [18] Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus: Theory, Applications and Software..Advanced Fuzzy Systems - Applications and Theory, World Scientific, Singapore 2004. Zbl 1083.03048, MR 2379415,
Reference: [19] Qin, Z., Liu, X., Cao, B.-Y.: Multi-level linear programming subject to max-product fuzzy relation equalities..In: International Workshop on Mathematics and Decision Science 2018.
Reference: [20] Qu, X., Wang, X.-P.: Minimization of linear objective functions under the constraints expressed by a system of fuzzy relation equations..Inform. Sci. 178 (2008), 17, 3482-3490. MR 2436417,
Reference: [21] Sanchez, E.: Resolution of composite fuzzy relation equations..Inform. Control 30 (1976), 38-48. MR 0437410,
Reference: [22] Shieh, B.-S.: Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint..Inform. Sci. 161 (2011), 285-297. MR 2566245,
Reference: [23] Xiao, G., Zhu, T.-X., Chen, Y., Yang, X.: Linear Searching Method for Solving Approximate Solution to System of Max-Min Fuzzy Relation Equations With Application in the Instructional Information Resources Allocation..In: IEEE Access 7 (2019), 65019-65028.
Reference: [24] Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: Latticized linear programming subject to max-product fuzzy relation inequalities with application in wireless communication..Inform. Sci. 358(C) (2016), 44-55.
Reference: [25] Zadeh, L. A.: Similarity relations and fuzzy orderings..Inform. Sci. 3 (1971), 177-200. MR 0297650,
Reference: [26] Zhou, X.-G., Yang, X.-P., Cao, B.-Y.: Posynomial geometric programming problem subject to max–min fuzzy relation equations..Inform. Sci. 328 (2016), 15-25.
.

Files

Files Size Format View
Kybernetika_58-2022-3_2.pdf 438.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo