Previous |  Up |  Next

Article

Title: On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations (English)
Author: Egermaier, Jiří
Author: Horníková, Hana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 6
Year: 2022
Pages: 751-774
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with the optimal choice of the parameter $\gamma $ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter $\gamma $ for various problem parameters (Reynolds number, mesh refinement) and especially for various isogeometric discretizations (degree and interelement continuity of the B-spline discretization bases). The idea is to be able to determine the optimal value of $\gamma $ for a problem that is relatively cheap to compute and, based on this value, predict suitable values for other problems, e.g., with finer mesh, different discretization, etc. The influence of inner solvers (direct or iterative based on multigrid method) is also discussed. (English)
Keyword: isogeometric analysis
Keyword: augmented Lagrangian preconditioner
Keyword: Navier-Stokes equations
MSC: 35Q30
MSC: 65F08
MSC: 65M60
MSC: 76D05
idZBL: Zbl 07613022
idMR: MR4505703
DOI: 10.21136/AM.2022.0130-21
.
Date available: 2022-10-31T13:27:05Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151055
.
Reference: [1] Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E.: Numerical simulation of lid-driven cavity flow by isogeometric analysis.Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48. 10.14311/AP.2021.61.0033
Reference: [2] Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E.: Isogeometric analysis for turbulent flow.Math. Comput. Simul. 145 (2018), 3-17. Zbl 07316162, MR 3725796, 10.1016/j.matcom.2016.05.010
Reference: [3] Benzi, M., Olshanskii, M. A.: An augmented Lagrangian-based approach to the Oseen problem.SIAM J. Sci. Comput. 28 (2006), 2095-2113. Zbl 1126.76028, MR 2272253, 10.1137/050646421
Reference: [4] Benzi, M., Olshanskii, M. A., Wang, Z.: Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 66 (2011), 486-508. Zbl 1421.76152, MR 2827781, 10.1002/fld.2267
Reference: [5] Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA.John Wiley & Sons, Hoboken (2009). Zbl 1378.65009, MR 3618875, 10.1002/9780470749081
Reference: [6] Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators.SIAM J. Sci. Comput. 27 (2006), 1651-1668. Zbl 1100.65042, MR 2206507, 10.1137/040608817
Reference: [7] Elman, H., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). Zbl 1304.76002, MR 3235759, 10.1093/acprof:oso/9780199678792.001.0001
Reference: [8] Farrell, P. E., Mitchell, L., Wechsung, F.: An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier-Stokes equations at high Reynolds number.SIAM J. Sci. Comput. 41 (2019), A3073--A3096 \99999DOI99999 10.1137/18M1219370 . Zbl 1448.65261, MR 4016136, 10.1137/18M1219370
Reference: [9] Guennebaud, G., Jacob, B.: Eigen v3.Available at http://eigen.tuxfamily.org (2010).
Reference: [10] Horníková, H., Vuik, C., Egermaier, J.: A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 93 (2021), 1788-1815 \99999DOI99999 10.1002/fld.4952 . MR 4252626
Reference: [11] Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. Zbl 1151.74419, MR 2152382, 10.1016/j.cma.2004.10.008
Reference: [12] Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier-Stokes equations.SIAM J. Sci. Comput. 24 (2002), 237-256. Zbl 1013.65039, MR 1924423, 10.1137/S106482759935808X
Reference: [13] Mantzaflaris, A., Jüttler, B.: G+Smo (Geometry plus Simulation modules) v0.8.1.Available at http://github.com/gismo (2018).
Reference: [14] Murphy, M. F., Golub, G. H., Wathen, A. J.: A note on preconditioning for indefinite linear systems.SIAM J. Sci. Comput. 21 (2000), 1969-1972. Zbl 0959.65063, MR 1762024, 10.1137/S1064827599355153
Reference: [15] Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow.J. Comput. Appl. Math. 128 (2001), 261-279. Zbl 0983.76051, MR 1820877, 10.1016/S0377-0427(00)00515-X
Reference: [16] Tielen, R., Möller, M., Göddeke, D., Vuik, C.: $p$-multigrid methods and their comparison to $h$-multigrid methods within isogeometric analysis.Comput. Methods Appl. Mech. Eng. 372 (2020), Article ID 113347, 27 pages. Zbl 07337843, MR 4138320, 10.1016/j.cma.2020.113347
Reference: [17] Trottenberg, U., Oosterlee, C. W., Schüller, A.: Multigrid.Academic Press, San Diego (2001). Zbl 0976.65106, MR 1807961
Reference: [18] Rehman, M. ur, Vuik, C., Segal, G.: SIMPLE-type preconditioners for the Oseen problem.Int. J. Numer. Methods Fluids 61 (2009), 432-452. Zbl 1171.76033, MR 2571325, 10.1002/fld.1957
Reference: [19] Vuik, C., Saghir, A., Boerstoel, G. P.: The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces.Int. J. Numer. Methods Fluids 33 (2000), 1027-1040. Zbl 0960.76054, 10.1002/1097-0363(20000815)33:7<1027::AID-FLD41>3.0.CO;2-S
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo