Previous |  Up |  Next

Article

Title: On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity (English)
Author: Sousedík, Bedřich
Author: Elman, Howard C.
Author: Lee, Kookjin
Author: Price, Randy
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 6
Year: 2022
Pages: 727-749
Summary lang: English
.
Category: math
.
Summary: We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments. (English)
Keyword: linear stability
Keyword: Navier-Stokes equations
Keyword: generalized polynomial chaos
Keyword: stochastic collocation
Keyword: stochastic Galerkin method
Keyword: Gaussian process regression
Keyword: shallow neural network
MSC: 35R60
MSC: 60H35
MSC: 65C30
idZBL: Zbl 07613021
idMR: MR4505702
DOI: 10.21136/AM.2022.0046-21
.
Date available: 2022-10-31T13:26:25Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151054
.
Reference: [1] Åkervik, E., Brandt, L., Henningson, D. S., pffner, J. H\oe, Marxen, O., Schlatter, P.: Steady solutions of the Navier-Stokes equations by selective frequency damping.Phys. Fluids 18 (2006), Article ID 068102. 10.1063/1.2211705
Reference: [2] Andreev, R., Schwab, C.: Sparse tensor approximation of parametric eigenvalue problems.Numerical Analysis of Multiscale Problems Lecture Notes in Computational Science and Engineering 83. Springer, Berlin (2012), 203-241. Zbl 1248.65116, MR 3050915, 10.1007/978-3-642-22061-6_7
Reference: [3] Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data.SIAM Rev. 52 (2010), 317-355. Zbl 1226.65004, MR 2646806, 10.1137/100786356
Reference: [4] Benner, P., Onwunta, A., Stoll, M.: A low-rank inexact Newton-Krylov method for stochastic eigenvalue problems.Comput. Methods Appl. Math. 19 (2019), 5-22. Zbl 1420.65043, MR 3898202, 10.1515/cmam-2018-0030
Reference: [5] Cliffe, K. A., Garratt, T. J., Spence, A.: Eigenvalues of block matrices arising from problems in fluid mechanics.SIAM J. Matrix Anal. Appl. 15 (1994), 1310-1318. Zbl 0807.65030, MR 1293919, 10.1137/S0895479892233230
Reference: [6] Cliffe, K. A., Spence, A., Tavener, S. J.: The numerical analysis of bifurcation problems with application to fluid mechanics.Acta Numerica 9 (2000), 39-131. Zbl 1005.65138, MR 1883627, 10.1017/S0962492900000398
Reference: [7] Foresee, F. Dan, Hagan, M. T.: Gauss-Newton approximation to Bayesian learning.Proceedings of International Conference on Neural Networks (ICNN'97). Vol. 3 IEEE, Piscataway (1997), 1930-1935. 10.1109/ICNN.1997.614194
Reference: [8] Elman, H. C., Meerbergen, K., Spence, A., Wu, M.: Lyapunov inverse iteration for identifying Hopf bifurcations in models of incompressible flow.SIAM J. Sci. Comput. 34 (2012), A1584--A1606. Zbl 1247.65047, MR 2970265, 10.1137/110827600
Reference: [9] Elman, H. C., Ramage, A., Silvester, D. J.: IFISS: A computational laboratory for investigating incompressible flow problems.SIAM Rev. 56 (2014), 261-273. Zbl 1426.76645, MR 3201182, 10.1137/120891393
Reference: [10] Elman, H. C., Silvester, D. J.: Collocation methods for exploring perturbations in linear stability analysis.SIAM J. Sci. Comput. 40 (2018), A2667--A2693. Zbl 1398.65176, MR 3846294, 10.1137/17M1117689
Reference: [11] Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). Zbl 1304.76002, MR 3235759, 10.1093/acprof:oso/9780199678792.001.0001
Reference: [12] Erickson, C. B., Ankenman, B. E., Sanchez, S. M.: Comparison of Gaussian process modeling software.Eur. J. Oper. Res. 266 (2018), 179-192. Zbl 1403.62006, MR 3736988, 10.1016/j.ejor.2017.10.002
Reference: [13] Gerstner, T., Griebel, M.: Numerical integration using sparse grids.Numer. Algorithms 18 (1998), 209-232. Zbl 0921.65022, MR 1669959, 10.1023/A:1019129717644
Reference: [14] Ghanem, R. G.: The nonlinear Gaussian spectrum of log-normal stochastic processes and variables.J. Appl. Mech. 66 (1999), 964-973. 10.1115/1.2791806
Reference: [15] Ghanem, R. G., Spanos, P. D.: Stochastic Finite Elements: A Spectral Approach.Springer, New York (1991). Zbl 0722.73080, MR 1083354, 10.1007/978-1-4612-3094-6
Reference: [16] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [17] Govaerts, W. J. F.: Numerical Methods for Bifurcations of Dynamical Equilibria.SIAM, Philadelphia (2000). Zbl 0935.37054, MR 1736704, 10.1137/1.9780898719543
Reference: [18] Lee, K., Elman, H. C., Sousedík, B.: A low-rank solver for the Navier-Stokes equations with uncertain viscosity.SIAM/ASA J. Uncertain. Quantif. 7 (2019), 1275-1300. Zbl 1442.35568, MR 4025775, 10.1137/17M1151912
Reference: [19] Lee, K., Sousedík, B.: Inexact methods for symmetric stochastic eigenvalue problems.SIAM/ASA J. Uncertain. Quantif. 6 (2018), 1744-1776. Zbl 1405.65052, MR 3892437, 10.1137/18M1176026
Reference: [20] Maître, O. P. Le, Knio, O. M.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics.Scientific Computation. Springer, Dordrecht (2010). Zbl 1193.76003, MR 2605529, 10.1007/978-90-481-3520-2
Reference: [21] Loiseau, J. C., Bucci, M. A., Cherubini, S., Robinet, J.-C.: Time-stepping and Krylov methods for large-scale instability problems.Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics Computational Methods in Applied Sciences 50. Springer, Cham (2019), 33-73. MR 3822594, 10.1007/978-3-319-91494-7_2
Reference: [22] MacKay, D. J. C.: Bayesian interpolation.Neural Comput. 4 (1992), 415-447. 10.1162/neco.1992.4.3.415
Reference: [23] Matthies, H. G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations.Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. Zbl 1088.65002, MR 2121216, 10.1016/j.cma.2004.05.027
Reference: [24] Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes.Numer. Math. 75 (1996), 79-97. Zbl 0883.65016, MR 1417864, 10.1007/s002110050231
Reference: [25] O'Hagan, A.: Polynomial chaos: A tutorial and critique from a statistician's perspective.Available at http://tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf (2013).
Reference: [26] Owen, N. E., Challenor, P., Menon, P. P., Bennani, S.: Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators.SIAM/ASA J. Uncertain. Quantif. 5 (2017), 403-435. Zbl 06736509, MR 3639591, 10.1137/15M1046812
Reference: [27] Peng, G. C. Y., Alber, M., al., A. Buganza Tepole et: Multiscale modeling meets machine learning: What can we learn?.Arch. Comput. Methods Eng. 28 (2021), 1017-1037. MR 4246233, 10.1007/s11831-020-09405-5
Reference: [28] Powell, C. E., Silvester, D. J.: Preconditioning steady-state Navier-Stokes equations with random data.SIAM J. Sci. Comput. 34 (2012), A2482--A2506. Zbl 1256.35216, MR 3023713, 10.1137/120870578
Reference: [29] Rasmussen, C. E., Williams, C. K. I.: Gaussian Processes for Machine Learning.Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006). Zbl 1177.68165, MR 2514435, 10.7551/mitpress/3206.001.0001
Reference: [30] Schmid, P. J., Henningson, D. S.: Stability and Transition in Shear Flows.Applied Mathematical Sciences 142. Springer, New York (2001). Zbl 0966.76003, MR 1801992, 10.1007/978-1-4613-0185-1
Reference: [31] Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving partial differential equations.J. Comput. Phys. 375 (2018), 1339-1364. Zbl 1416.65394, MR 3874585, 10.1016/j.jcp.2018.08.029
Reference: [32] Sousedík, B., Elman, H. C.: Stochastic Galerkin methods for the steady-state Navier-Stokes equations.J. Comput. Phys. 316 (2016), 435-452. Zbl 1349.76268, MR 3494362, 10.1016/j.jcp.2016.04.013
Reference: [33] Sousedík, B., Lee, K.: Stochastic Galerkin methods for linear stability analysis of systems with parametric uncertainty.Avaliable at https://arxiv.org/abs/2202.12485 (2022), 27 pages. MR 4490318
Reference: [34] Stein, M. L.: Interpolation of Spatial Data: Some Theory for Kriging.Springer Series in Statistics. Springer, New York (1999). Zbl 0924.62100, MR 1697409, 10.1007/978-1-4612-1494-6
Reference: [35] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D. L.: Accelerating the convergence of the back-propagation method.Biol. Cybern. 59 (1988), 257-263. 10.1007/BF00332914
Reference: [36] Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach.Princeton University Press, Princeton (2010). Zbl 1210.65002, MR 2723020, 10.1515/9781400835348
Reference: [37] Xiu, D., Karniadakis, G. E.: The Wiener-Askey polynomial chaos for stochastic differential equations.SIAM J. Sci. Comput. 24 (2002), 619-644. Zbl 1014.65004, MR 1951058, 10.1137/S1064827501387826
Reference: [38] Yan, L., Duan, X., Liu, B., Xu, J.: Gaussian processes and polynomial chaos expansion for regression problem: Linkage via the RKHS and comparison via the KL divergence.Entropy 20 (2018), Article ID 191, 22 pages \99999DOI99999 10.3390/e20030191 \goodbreak.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo