Previous |  Up |  Next

Article

Title: On Beurling measure algebras (English)
Author: Stokke, Ross
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 2
Year: 2022
Pages: 169-187
Summary lang: English
.
Category: math
.
Summary: We show how the measure theory of regular compacted-Borel measures defined on the $\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\mathcal M}(G,\omega)$, thus filling a gap in the literature. (English)
Keyword: weighted locally compact group
Keyword: group algebra
Keyword: measure algebra
Keyword: Beurling algebra
MSC: 22D15
MSC: 28C10
MSC: 43A05
MSC: 43A10
MSC: 43A20
MSC: 43A60
idZBL: Zbl 07613029
idMR: MR4506131
DOI: 10.14712/1213-7243.2022.016
.
Date available: 2022-11-02T09:14:53Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/151084
.
Reference: [1] Bonsall F. F., Duncan J.: Complete Normed Algebras.Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer, New York, 1973. Zbl 0271.46039, MR 0423029
Reference: [2] Dales H. G.: Banach Algebras and Automatic Continuity.London Mathematical Society Monographs, New Series, 24; Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR 1816726
Reference: [3] Dales H. G., Lau A. T.-M.: The second duals of Beurling algebras.Mem. Amer. Math. Soc. 177 (2005), no. 836, vi + 191 pages. MR 2155972
Reference: [4] Fell J. M. G., Doran R. S.: Representations of $*$-algebras, Locally Compact Groups, and Banach $*$-algebraic Bundles, Vol. 1, Basic Representation Theory of Groups and Algebras.Pure and Applied Mathematics, 125, Academic Press, Boston, 1988. MR 0936628
Reference: [5] Ghahramani F.: Compact elements of weighted group algebras.Pacific J. Math. 113 (1984), no. 1, 77–84. MR 0745596, 10.2140/pjm.1984.113.77
Reference: [6] Ghahramani F.: Weighted group algebra as an ideal in its second dual space.Proc. Amer. Math. Soc. 90 (1984), no. 1, 71–76. MR 0722417, 10.1090/S0002-9939-1984-0722417-9
Reference: [7] Ghahramani F., Zadeh S.: Bipositive isomorphisms between Beurling algebras and between their second dual algebras.Canad. J. Math. 69 (2017), no. 1, 3–20. MR 3589852, 10.4153/CJM-2016-028-5
Reference: [8] Grønbæk N.: Amenability of weighted convolution algebras on locally compact groups.Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775. MR 0962282, 10.1090/S0002-9947-1990-0962282-5
Reference: [9] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups. Integration Theory, Group Representations.Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, New York; Springer, Berlin, 1963. MR 0156915
Reference: [10] Ilie M., Stokke R.: Weak$^*$-continuous homomorphisms of Fourier–Stieltjes algebras.Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 107–120. MR 2431642, 10.1017/S0305004108001199
Reference: [11] Kaniuth E.: A Course in Commutative Banach Algebras.Graduate Texts in Mathematics, 246, Springer, New York, 2009. MR 2458901, 10.1007/978-0-387-72476-8
Reference: [12] Kroeker M. E., Stephens A., Stokke R., Yee R.: Norm-multiplicative homomorphisms of Beurling algebras.J. Math. Anal. Appl. 509 (2022), no. 1, Paper No. 125935, 25 pages. MR 4355933, 10.1016/j.jmaa.2021.125935
Reference: [13] Lau A. T.-M.: Operators which commute with convolutions on subspaces of $L_\infty(G)$.Colloq. Math. 39 (1978), no. 2, 351–359. MR 0522378, 10.4064/cm-39-2-351-359
Reference: [14] Palmer T. W.: Banach Algebras and the General Theory of $*$-algebras, Vol. I., Algebras and Banach algebras.Encyclopedia of Mathematics and Its Applications, 49, Cambridge University Press, Cambridge, 1994. MR 1270014
Reference: [15] Reiter H., Stegeman J. D.: Classical Harmonic Analysis and Locally Compact Groups.London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000. MR 1802924
Reference: [16] Runde V.: Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule.Math. Scand. 95 (2004), no. 1, 124–144. MR 2091485, 10.7146/math.scand.a-14452
Reference: [17] Samei E.: Weak amenability and $2$-weak amenability of Beurling algebras.J. Math. Anal. Appl. 346 (2008), no. 2, 451–467. MR 2431541, 10.1016/j.jmaa.2008.05.085
Reference: [18] Shepelska V., Zhang Y.: Non-weakly amenable Beurling algebras.Indiana Univ. Math. J. 67 (2018), no. 1, 119–150. MR 3776016, 10.1512/iumj.2018.67.6287
Reference: [19] Zadeh S.: Isomorphisms of Banach Algebras Associated with Locally Compact Groups.PhD Thesis, University of Manitoba, Canada, 2015.
Reference: [20] Zadeh S.: Isometric isomorphisms of Beurling algebras.J. Math. Anal. Appl. 438 (2016), no. 1, 1–13. MR 3462562, 10.1016/j.jmaa.2016.01.060
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-2_4.pdf 279.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo