Previous |  Up |  Next

Article

Title: Weighted Erdős-Kac type theorem over quadratic field in short intervals (English)
Author: Liu, Xiaoli
Author: Yang, Zhishan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 957-976
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals. (English)
Keyword: ideal counting function
Keyword: Erdős-Kac theorem
Keyword: quadratic field
Keyword: short intervals
Keyword: mean value
MSC: 11N37
MSC: 11N45
MSC: 11N60
idZBL: Zbl 07655774
idMR: MR4517587
DOI: 10.21136/CMJ.2022.0203-21
.
Date available: 2022-11-28T11:32:40Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151121
.
Reference: [1] Bump, D.: Automorphic Forms and Representations.Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). Zbl 0868.11022, MR 1431508, 10.1017/CBO9780511609572
Reference: [2] Chandrasekharan, K., Good, A.: On the number of integral ideals in Galois extensions.Monatsh. Math. 95 (1983), 99-109. Zbl 0498.12009, MR 0697150, 10.1007/BF01323653
Reference: [3] Chandrasekharan, K., Narasimhan, R.: The approximate functional equation for a class of zeta-functions.Math. Ann. 152 (1963), 30-64. Zbl 0116.27001, MR 0153643, 10.1007/BF01343729
Reference: [4] Erdős, P., Kac, M.: On the Gaussian law of errors in the theory of additive functions.Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. Zbl 0021.20702, MR 0002374, 10.1073/pnas.25.4.206
Reference: [5] Huxley, M. N.: On the difference between consecutive primes.Invent. Math. 15 (1972), 164-170. Zbl 0241.10026, MR 0292774, 10.1007/BF01418933
Reference: [6] Landau, E.: Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale.German B. G. Teubner, Leipzig (1927),\99999JFM99999 53.0141.09. MR 0031002
Reference: [7] Liu, X.-L., Yang, Z.-S.: Weighted Erdős-Kac type theorems over Gaussian field in short intervals.Acta Math. Hung. 162 (2020), 465-482. Zbl 1474.11169, MR 4173309, 10.1007/s10474-020-01087-6
Reference: [8] Lü, G., Wang, Y.: Note on the number of integral ideals in Galois extensions.Sci. China, Math. 53 (2010), 2417-2424. Zbl 1273.11160, MR 2718837, 10.1007/s11425-010-4091-7
Reference: [9] Lü, G., Yang, Z.: The average behavior of the coefficients of Dedekind zeta function over square numbers.J. Number Theory 131 (2011), 1924-1938. Zbl 1261.11073, MR 2811559, 10.1016/j.jnt.2011.01.018
Reference: [10] Nowak, W. G.: On the distribution of integer ideals in algebraic number fields.Math. Nachr. 161 (1993), 59-74. Zbl 0803.11061, MR 1251010, 10.1002/mana.19931610107
Reference: [11] Wu, J., Wu, Q.: Mean values for a class of arithmetic functions in short intervals.Math. Nachr. 293 (2020), 178-202. Zbl 07197944, MR 4060372, 10.1002/mana.201800276
Reference: [12] Zhai, W.: Asymptotics for a class of arithmetic functions.Acta Arith. 170 (2015), 135-160. Zbl 1377.11106, MR 3383642, 10.4064/aa170-2-3
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo