Title: | Weighted Erdős-Kac type theorem over quadratic field in short intervals (English) |
Author: | Liu, Xiaoli |
Author: | Yang, Zhishan |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 72 |
Issue: | 4 |
Year: | 2022 |
Pages: | 957-976 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals. (English) |
Keyword: | ideal counting function |
Keyword: | Erdős-Kac theorem |
Keyword: | quadratic field |
Keyword: | short intervals |
Keyword: | mean value |
MSC: | 11N37 |
MSC: | 11N45 |
MSC: | 11N60 |
idZBL: | Zbl 07655774 |
idMR: | MR4517587 |
DOI: | 10.21136/CMJ.2022.0203-21 |
. | |
Date available: | 2022-11-28T11:32:40Z |
Last updated: | 2023-04-11 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151121 |
. | |
Reference: | [1] Bump, D.: Automorphic Forms and Representations.Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). Zbl 0868.11022, MR 1431508, 10.1017/CBO9780511609572 |
Reference: | [2] Chandrasekharan, K., Good, A.: On the number of integral ideals in Galois extensions.Monatsh. Math. 95 (1983), 99-109. Zbl 0498.12009, MR 0697150, 10.1007/BF01323653 |
Reference: | [3] Chandrasekharan, K., Narasimhan, R.: The approximate functional equation for a class of zeta-functions.Math. Ann. 152 (1963), 30-64. Zbl 0116.27001, MR 0153643, 10.1007/BF01343729 |
Reference: | [4] Erdős, P., Kac, M.: On the Gaussian law of errors in the theory of additive functions.Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. Zbl 0021.20702, MR 0002374, 10.1073/pnas.25.4.206 |
Reference: | [5] Huxley, M. N.: On the difference between consecutive primes.Invent. Math. 15 (1972), 164-170. Zbl 0241.10026, MR 0292774, 10.1007/BF01418933 |
Reference: | [6] Landau, E.: Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale.German B. G. Teubner, Leipzig (1927),\99999JFM99999 53.0141.09. MR 0031002 |
Reference: | [7] Liu, X.-L., Yang, Z.-S.: Weighted Erdős-Kac type theorems over Gaussian field in short intervals.Acta Math. Hung. 162 (2020), 465-482. Zbl 1474.11169, MR 4173309, 10.1007/s10474-020-01087-6 |
Reference: | [8] Lü, G., Wang, Y.: Note on the number of integral ideals in Galois extensions.Sci. China, Math. 53 (2010), 2417-2424. Zbl 1273.11160, MR 2718837, 10.1007/s11425-010-4091-7 |
Reference: | [9] Lü, G., Yang, Z.: The average behavior of the coefficients of Dedekind zeta function over square numbers.J. Number Theory 131 (2011), 1924-1938. Zbl 1261.11073, MR 2811559, 10.1016/j.jnt.2011.01.018 |
Reference: | [10] Nowak, W. G.: On the distribution of integer ideals in algebraic number fields.Math. Nachr. 161 (1993), 59-74. Zbl 0803.11061, MR 1251010, 10.1002/mana.19931610107 |
Reference: | [11] Wu, J., Wu, Q.: Mean values for a class of arithmetic functions in short intervals.Math. Nachr. 293 (2020), 178-202. Zbl 07197944, MR 4060372, 10.1002/mana.201800276 |
Reference: | [12] Zhai, W.: Asymptotics for a class of arithmetic functions.Acta Arith. 170 (2015), 135-160. Zbl 1377.11106, MR 3383642, 10.4064/aa170-2-3 |
. |
Fulltext not available (moving wall 24 months)