Previous |  Up |  Next

Article

Title: Semi $n$-ideals of commutative rings (English)
Author: Yetkin Çelikel, Ece
Author: Khashan, Hani A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 977-988
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity. A proper ideal $I$ is said to be an $n$-ideal of $R$ if for $a,b\in R$, $ab\in I$ and $a\notin \sqrt {0}$ imply $b\in I$. We give a new generalization of the concept of $n$-ideals by defining a proper ideal $I$ of $R$ to be a semi $n$-ideal if whenever $a\in R$ is such that $a^{2}\in I$, then $a\in \sqrt {0}$ or $a\in I$. We give some examples of semi \hbox {$n$-ideal} and investigate semi $n$-ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of ideals. Moreover, we prove that every proper ideal of a zero dimensional general ZPI-ring $R$ is a semi $n$-ideal if and only if $R$ is a UN-ring or $R\cong F_{1}\times F_{2}\times \cdots \times F_{k}$, where $F_{i}$ is a field for $i=1,\dots ,k$. Finally, for a ring homomorphism $f\colon R\rightarrow S$ and an ideal $J$ of $S$, we study some forms of a semi $n$-ideal of the amalgamation $R\bowtie ^{f}J$ of $R$ with $S$ along $J$ with respect to $f$. (English)
Keyword: semi $n$-ideal
Keyword: semiprime ideal
Keyword: $n$-ideal
MSC: 13A15
MSC: 13A99
idZBL: Zbl 07655775
idMR: MR4517588
DOI: 10.21136/CMJ.2022.0208-21
.
Date available: 2022-11-28T11:33:19Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151122
.
Reference: [1] Badawi, A.: On weakly semiprime ideals of commutative rings.Beitr. Algebra Geom. 57 (2016), 589-597. Zbl 1349.13005, MR 3535069, 10.1007/s13366-016-0283-9
Reference: [2] Călugăreanu, G.: $UN$-rings.J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. Zbl 1397.16037, MR 3575972, 10.1142/S0219498816501826
Reference: [3] Çelikel, E. Yetkin: Generalizations of $n$-ideals of commutative rings.Erzincan Univ. J. Sci. Technol. 12 (2019), 650-657. MR 4355689, 10.18185/erzifbed.471609
Reference: [4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [5] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326
Reference: [6] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Appled Mathematics 90. Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267
Reference: [7] Khashan, H. A., Bani-Ata, A. B.: $J$-ideals of commutative rings.Int. Electron. J. Algebra 29 (2021), 148-164. Zbl 1467.13005, MR 4206318, 10.24330/ieja.852139
Reference: [8] Khashan, H. A., Çelikel, E. Yetkin: Quasi $J$-ideals of commutative rings.(to appear) in Ric. Mat (2022). MR 4394285, 10.1007/s11587-022-00716-2
Reference: [9] Khashan, H. A., Çelikel, E. Yetkin: Weakly $J$-ideals of commutative rings.Filomat 36 (2022), 485-495. MR 4394285, 10.2298/FIL2202485K
Reference: [10] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 07418085, MR 3639382, 10.2298/FIL1710933T
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo