Title: | On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence (English) |
Author: | Abolfath Beigi, Kosar |
Author: | Divaani-Aazar, Kamran |
Author: | Tousi, Massoud |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 72 |
Issue: | 4 |
Year: | 2022 |
Pages: | 989-1002 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $R$ be a local ring and $C$ a semidualizing module of $R$. We investigate the behavior of certain classes of generalized Cohen-Macaulay $R$-modules under the Foxby equivalence between the Auslander and Bass classes with respect to $C$. In particular, we show that generalized Cohen-Macaulay $R$-modules are invariant under this equivalence and if $M$ is a finitely generated $R$-module in the Auslander class with respect to $C$ such that $C\otimes _RM$ is surjective Buchsbaum, then $M$ is also surjective \hbox {Buchsbaum}.\looseness +1 (English) |
Keyword: | Auslander class |
Keyword: | Bass class |
Keyword: | Buchsbaum module |
Keyword: | dualizing module |
Keyword: | generalized Cohen-Macaulay module |
Keyword: | local cohomology |
Keyword: | semidualizing module |
Keyword: | surjective Buchsbaum module |
MSC: | 13C14 |
MSC: | 13D05 |
MSC: | 13D45 |
idZBL: | Zbl 07655776 |
idMR: | MR4517589 |
DOI: | 10.21136/CMJ.2022.0227-21 |
. | |
Date available: | 2022-11-28T11:33:55Z |
Last updated: | 2023-04-11 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151123 |
. | |
Reference: | [1] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7.Springer, Berlin (1998). Zbl 0902.13001, MR 1727221 |
Reference: | [2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956, 10.1017/cbo9780511608681.004 |
Reference: | [3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7 |
Reference: | [4] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions: A functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007 |
Reference: | [5] Foxby, H.-B.: Hyperhomological algebra & commutative rings, notes in preparation.. |
Reference: | [6] Herzog, J.: Komplex Auflösungen und Dualität in der lokalen Algebra: Habilitationsschrift.Universität Regensburg, Regensburg (1974), German. |
Reference: | [7] Kawasaki, T.: Surjective-Buchsbaum modules over Cohen-Macaulay local rings.Math. Z. 218 (1995), 191-205. Zbl 0814.13017, MR 1318153, 10.1007/BF02571897 |
Reference: | [8] Miyazaki, C.: Graded Buchsbaum algebras and Segre products.Tokyo J. Math. 12 (1989), 1-20. Zbl 0696.13016, MR 1001728, 10.3836/tjm/1270133544 |
Reference: | [9] Rotman, J. J.: An Introduction to Homological Algebra.Universitext. Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977 |
Reference: | [10] Sather-Wagstaff, S.: Semidualizing modules.Available at https://www.ndsu.edu/pubweb/ {ssatherw/DOCS/sdm.pdf} (2000), 109 pages. |
Reference: | [11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln.Math. Nachr. 85 (1978), 57-73 German. Zbl 0398.13014, MR 0517641, 10.1002/mana.19780850106 |
Reference: | [12] Sharp, R. Y.: Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings.Proc. Lond. Math. Soc., III. Ser. 25 (1972), 303-328. Zbl 0244.13015, MR 0306188, 10.1112/plms/s3-25.2.303 |
Reference: | [13] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications: An Interaction Between Algebra, Geometry and Topology.Springer, Berlin (1986). Zbl 0606.13018, MR 0881220, 10.1007/978-3-662-02500-0 |
Reference: | [14] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121 |
Reference: | [15] Trung, N. V.: Absolutely superficial sequences.Math. Proc. Camb. Philos. Soc. 93 (1983), 35-47. Zbl 0509.13024, MR 0684272, 10.1017/S0305004100060308 |
Reference: | [16] Yamagishi, K.: Bass number characterization of surjective Buchsbaum modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 261-279. Zbl 0760.13010, MR 1113425, 10.1017/S0305004100070341 |
. |
Fulltext not available (moving wall 24 months)