Previous |  Up |  Next

Article

Title: On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence (English)
Author: Abolfath Beigi, Kosar
Author: Divaani-Aazar, Kamran
Author: Tousi, Massoud
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 989-1002
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a local ring and $C$ a semidualizing module of $R$. We investigate the behavior of certain classes of generalized Cohen-Macaulay $R$-modules under the Foxby equivalence between the Auslander and Bass classes with respect to $C$. In particular, we show that generalized Cohen-Macaulay $R$-modules are invariant under this equivalence and if $M$ is a finitely generated $R$-module in the Auslander class with respect to $C$ such that $C\otimes _RM$ is surjective Buchsbaum, then $M$ is also surjective \hbox {Buchsbaum}.\looseness +1 (English)
Keyword: Auslander class
Keyword: Bass class
Keyword: Buchsbaum module
Keyword: dualizing module
Keyword: generalized Cohen-Macaulay module
Keyword: local cohomology
Keyword: semidualizing module
Keyword: surjective Buchsbaum module
MSC: 13C14
MSC: 13D05
MSC: 13D45
idZBL: Zbl 07655776
idMR: MR4517589
DOI: 10.21136/CMJ.2022.0227-21
.
Date available: 2022-11-28T11:33:55Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151123
.
Reference: [1] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7.Springer, Berlin (1998). Zbl 0902.13001, MR 1727221
Reference: [2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956, 10.1017/cbo9780511608681.004
Reference: [3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [4] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions: A functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007
Reference: [5] Foxby, H.-B.: Hyperhomological algebra & commutative rings, notes in preparation..
Reference: [6] Herzog, J.: Komplex Auflösungen und Dualität in der lokalen Algebra: Habilitationsschrift.Universität Regensburg, Regensburg (1974), German.
Reference: [7] Kawasaki, T.: Surjective-Buchsbaum modules over Cohen-Macaulay local rings.Math. Z. 218 (1995), 191-205. Zbl 0814.13017, MR 1318153, 10.1007/BF02571897
Reference: [8] Miyazaki, C.: Graded Buchsbaum algebras and Segre products.Tokyo J. Math. 12 (1989), 1-20. Zbl 0696.13016, MR 1001728, 10.3836/tjm/1270133544
Reference: [9] Rotman, J. J.: An Introduction to Homological Algebra.Universitext. Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977
Reference: [10] Sather-Wagstaff, S.: Semidualizing modules.Available at https://www.ndsu.edu/pubweb/ {ssatherw/DOCS/sdm.pdf} (2000), 109 pages.
Reference: [11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln.Math. Nachr. 85 (1978), 57-73 German. Zbl 0398.13014, MR 0517641, 10.1002/mana.19780850106
Reference: [12] Sharp, R. Y.: Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings.Proc. Lond. Math. Soc., III. Ser. 25 (1972), 303-328. Zbl 0244.13015, MR 0306188, 10.1112/plms/s3-25.2.303
Reference: [13] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications: An Interaction Between Algebra, Geometry and Topology.Springer, Berlin (1986). Zbl 0606.13018, MR 0881220, 10.1007/978-3-662-02500-0
Reference: [14] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121
Reference: [15] Trung, N. V.: Absolutely superficial sequences.Math. Proc. Camb. Philos. Soc. 93 (1983), 35-47. Zbl 0509.13024, MR 0684272, 10.1017/S0305004100060308
Reference: [16] Yamagishi, K.: Bass number characterization of surjective Buchsbaum modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 261-279. Zbl 0760.13010, MR 1113425, 10.1017/S0305004100070341
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo