Previous |  Up |  Next

Article

Title: A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form (English)
Author: Hua, Guodong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1047-1054
Summary lang: English
.
Category: math
.
Summary: Let $f$ be a normalized primitive holomorphic cusp form of even integral weight $k$ for the full modular group ${\rm SL}(2,\mathbb {Z})$, and denote its $n$th Fourier coefficient by $\lambda _{f}(n)$. We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017). (English)
Keyword: circle method
Keyword: cusp form
Keyword: Fourier coefficient
MSC: 11F30
MSC: 11F41
MSC: 11N37
idZBL: Zbl 07655781
idMR: MR4517594
DOI: 10.21136/CMJ.2022.0329-21
.
Date available: 2022-11-28T11:36:22Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151128
.
Reference: [1] Calderón, C., Velasco, M. J. de: On divisors of a quadratic form.Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. Zbl 1031.11057, MR 1754956, 10.1007/BF01377596
Reference: [2] Chamizo, F., Iwaniec, H.: On the sphere problem.Rev. Mat. Iberoam. 11 (1995), 417-429. Zbl 0837.11054, MR 1344899, 10.4171/RMI/178
Reference: [3] Chen, J.: Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II.Sci. Sin. 12 (1963), 751-764. Zbl 0127.27503, MR 0186632
Reference: [4] Deligne, P.: La conjecture de Weil. I.Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. Zbl 0287.14001, MR 0340258, 10.1007/BF02684373
Reference: [5] Friedlander, J. B., Iwaniec, H.: Hyperbolic prime number theorem.Acta Math. 202 (2009), 1-19. Zbl 1278.11089, MR 2486486, 10.1007/s11511-009-0033-z
Reference: [6] Guo, R., Zhai, W.: Some problems about the ternary quadratic form $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$.Acta Arith. 156 (2012), 101-121. Zbl 1270.11099, MR 2997561, 10.4064/aa156-2-1
Reference: [7] Heath-Brown, D. R.: Lattice points in the sphere.Number Theory in Progress. Vol. 2 de Gruyter, Berlin (1999), 883-892. Zbl 0929.11040, MR 1689550
Reference: [8] Hu, G., Jiang, Y., Lü, G.: The Fourier coefficients of $\Theta$-series in arithmetic progressions.Mathematika 66 (2020), 39-55. Zbl 1470.11082, MR 4130311, 10.1112/mtk.12006
Reference: [9] Hu, G., Lü, G.: Sums of higher divisor functions.J. Number Theory 220 (2021), 61-74. Zbl 1466.11065, MR 4177535, 10.1016/j.jnt.2020.08.009
Reference: [10] Hu, L., Yang, L.: Sums of the triple divisor function over values of a quaternary quadratic form.Acta Arith. 183 (2018), 63-85. Zbl 1428.11170, MR 3774393, 10.4064/aa170120-20-10
Reference: [11] Hua, L.-K.: On Waring's problem.Q. J. Math., Oxf. Ser. 9 (1938), 199-202. Zbl 0020.10504, 10.1093/qmath/os-9.1.199
Reference: [12] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem.Sci. China, Ser. A 48 (2005), 785-797. Zbl 1100.11025, MR 2158973, 10.1360/03ys0341
Reference: [13] Sun, Q., Zhang, D.: Sums of the triple divisor function over values of a ternary quadratic form.J. Number Theory 168 (2016), 215-246. Zbl 1396.11117, MR 3515816, 10.1016/j.jnt.2016.04.010
Reference: [14] Vaughan, R. C.: The Hardy-Littlewood Method.Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). Zbl 0868.11046, MR 1435742, 10.1017/CBO9780511470929
Reference: [15] Vinogradov, I. M.: On the number of integer points in a sphere.Izv. Akad. Nauk SSSR, Ser. Mat. 27 (1963), 957-968 Russian. Zbl 0116.03901, MR 0156821
Reference: [16] Zhang, D., Wang, Y.: Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form.J. Number Theory 176 (2017), 211-225. Zbl 1422.11100, MR 3622128, 10.1016/j.jnt.2016.12.018
Reference: [17] Zhao, L.: The sum of divisors of a quadratic form.Acta Arith. 163 (2014), 161-177. Zbl 1346.11056, MR 3200169, 10.4064/aa163-2-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo