Previous |  Up |  Next

Article

Title: On higher moments of Hecke eigenvalues attached to cusp forms (English)
Author: Hua, Guodong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1055-1064
Summary lang: English
.
Category: math
.
Summary: Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers. (English)
Keyword: Hecke eigenform
Keyword: Fourier coefficient
Keyword: Rankin-Selberg $L$-function
MSC: 11F11
MSC: 11F30
MSC: 11F66
idZBL: Zbl 07655782
idMR: MR4517595
DOI: 10.21136/CMJ.2022.0330-21
.
Date available: 2022-11-28T11:36:57Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151129
.
Reference: [1] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. I.Compos. Math. 150 (2014), 729-748. Zbl 1304.11040, MR 3209793, 10.1112/S0010437X13007653
Reference: [2] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. II.Ann. Math. (2) 181 (2015), 303-359. Zbl 1339.11060, MR 3272927, 10.4007/annals.2015.181.1.5
Reference: [3] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. III.Duke Math. J. 166 (2017), 325-402. Zbl 1372.11054, MR 3600753, 10.1215/00127094-3714971
Reference: [4] Deligne, P.: La conjecture de Weil. I.Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. Zbl 0287.14001, MR 0340258, 10.1007/BF02684373
Reference: [5] Fomenko, O. M.: Fourier coefficients of cusp forms and automorphic $L$-functions.J. Math. Sci., New York 95 (1999), 2295-2316. Zbl 0993.11023, MR 1691291, 10.1007/BF02172473
Reference: [6] Gelbart, S., Jacquet, H.: A relation between automorphic representations of $GL(2)$ and $GL(3)$.Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. Zbl 0406.10022, MR 0533066, 10.24033/asens.1355
Reference: [7] Hecke, E.: Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik.Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German \99999JFM99999 53.0345.02. MR 3069476, 10.1007/BF02952521
Reference: [8] Huang, B.: On the Rankin-Selberg problem.Math. Ann. 381 (2021), 1217-1251. Zbl 1483.11098, MR 4333413, 10.1007/s00208-021-02186-7
Reference: [9] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). Zbl 1059.11001, MR 2061214, 10.1090/coll/053
Reference: [10] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A.: Rankin-Selberg convolutions. I.Am. J. Math. 105 (1983), 367-464. Zbl 0525.22018, MR 0701565, 10.2307/2374264
Reference: [11] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic representations. I.Am. J. Math. 103 (1981), 499-558. Zbl 0473.12008, MR 0618323, 10.2307/2374103
Reference: [12] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic forms. II.Am. J. Math. 103 (1981), 777-815. Zbl 0491.10020, MR 0623137, 10.2307/2374050
Reference: [13] Kim, H. H.: Functoriality for the exterior square of $GL_{4}$ and symmetric fourth of $GL_{2}$.J. Am. Math. Soc. 16 (2003), 139-183. Zbl 1018.11024, MR 1937203, 10.1090/S0894-0347-02-00410-1
Reference: [14] Kim, H. H., Shahidi, F.: Cuspidality of symmetric power with applications.Duke Math. J. 112 (2002), 177-197. Zbl 1074.11027, MR 1890650, 10.1215/S0012-9074-02-11215-0
Reference: [15] Kim, H. H., Shahidi, F.: Functorial products for $GL_{2}\times GL_{3}$ and the symmetric cube for $GL_{2}$.Ann. Math. (2) 155 (2002), 837-893. Zbl 1040.11036, MR 1923967, 10.2307/3062134
Reference: [16] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms.Q. J. Math. 62 (2011), 687-716. Zbl 1269.11044, MR 2825478, 10.1093/qmath/haq012
Reference: [17] Lü, G.: On higher moments of Fourier coefficients of holomorphic cusp forms. II.Montash. Math. 169 (2013), 409-422. Zbl 1287.11059, MR 3019292, 10.1007/s00605-012-0381-1
Reference: [18] Lü, G., Sankaranarayanan, A.: Higher moments of Fourier coefficients of cusp forms.Can. Math. Bull. 58 (2015), 548-560. Zbl 1385.11021, MR 3372871, 10.4153/CMB-2015-031-1
Reference: [19] Moreno, C. J., Shahidi, F.: The fourth moment of Ramanujan $\tau$-function.Math. Ann. 266 (1983), 233-239. Zbl 0508.10014, MR 0724740, 10.1007/BF01458445
Reference: [20] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms.Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. Zbl 07458825, MR 4349240, 10.1007/s10240-021-00127-3
Reference: [21] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II.Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. Zbl 07458826, MR 4349241, 10.1007/s10240-021-00126-4
Reference: [22] Ramakrishnan, D.: Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $SL(2)$.Ann. Math. (2) 152 (2000), 45-111. Zbl 0989.11023, MR 1792292, 10.2307/2661379
Reference: [23] Ramakrishnan, D., Wang, S.: A cuspidality criterion for the functorial product on $GL(2)\times GL(3)$ with a cohomological application.Int. Math. Res. Not. 27 (2004), 1355-1394. Zbl 1089.11029, MR 2052020, 10.1155/S1073792804132856
Reference: [24] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms.Proc. Camb. Philos. Soc. 35 (1939), 357-372. Zbl 0021.39202, MR 0000411, 10.1017/S0305004100021101
Reference: [25] Rankin, R. A.: Sums of cusp form coefficients.Automorphic Forms and Anallytic Number Theory University of Montréal, Montréal (1990), 115-121. Zbl 0735.11023, MR 1111014
Reference: [26] Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory.Duke Math. J. 81 (1996), 269-322. Zbl 0866.11050, MR 1395406, 10.1215/S0012-7094-96-08115-6
Reference: [27] Selberg, A.: Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist.Arch. Math. Naturvid. B 43 (1940), 47-50 German. Zbl 0023.22201, MR 0002626
Reference: [28] Shahidi, F.: On certain $L$-functions.Am. J. Math. 103 (1981), 297-355. Zbl 0467.12013, MR 0610479, 10.2307/2374219
Reference: [29] Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for $GL(n)$.Am. J. Math. 106 (1984), 67-111. Zbl 0567.22008, MR 0729755, 10.2307/2374430
Reference: [30] Shahidi, F.: Local coefficients as Artin factors for real groups.Duke Math. J. 52 (1985), 973-1007. Zbl 0674.10027, MR 0816396, 10.1215/S0012-7094-85-05252-4
Reference: [31] Shahidi, F.: Third symmetric power $L$-functions for $GL(2)$.Compos. Math. 70 (1989), 245-273. Zbl 0684.10026, MR 1002045
Reference: [32] Shahidi, F.: A proof of Langlands' conjecture on Plancherel measures; complementary series for $p$-adic groups.Ann. Math. (2) 132 (1990), 273-330. Zbl 0780.22005, MR 1070599, 10.2307/1971524
Reference: [33] Wilton, J. R.: A note on Ramanujan's arithmetical function $\tau(n)$.Proc. Camb. Philos. Soc. 25 (1929), 121-129 \99999JFM99999 55.0709.02. MR 3194792, 10.1017/S0305004100018636
Reference: [34] Wu, J.: Power sums of Hecke eigenvalues and application.Acta Arith. 137 (2009), 333-344. Zbl 1232.11054, MR 2506587, 10.4064/aa137-4-3
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo