Previous |  Up |  Next

Article

Title: Rings generalized by tripotents and nilpotents (English)
Author: Chen, Huanyin
Author: Sheibani, Marjan
Author: Ashrafi, Nahid
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1175-1182
Summary lang: English
.
Category: math
.
Summary: We present new characterizations of the rings for which every element is a sum of two tripotents and a nilpotent that commute. These extend the results of Z. L. Ying, M. T. Koşan, Y. Zhou (2016) and Y. Zhou (2018). (English)
Keyword: nilpotent
Keyword: tripotent
Keyword: 2-idempotent
Keyword: exchange ring
MSC: 13B99
MSC: 16E50
MSC: 16U99
idZBL: Zbl 07655792
idMR: MR4517605
DOI: 10.21136/CMJ.2022.0427-21
.
Date available: 2022-11-28T11:42:34Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151139
.
Reference: [1] Abyzov, A. N.: Strongly $q$-nil-clean rings.Sib. Math. J. 60 (2019), 197-208. Zbl 1461.16040, MR 3951146, 10.33048/smzh.2019.60.202
Reference: [2] Chen, H.: Rings Related Stable Range Conditions.Series in Algebra 11. World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904, 10.1142/8006
Reference: [3] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings.J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. Zbl 1382.16035, MR 3661645, 10.1142/S021949881750178X
Reference: [4] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units.Publ. Math. 88 (2016), 449-466. Zbl 1374.16089, MR 3491753, 10.5486/PMD.2016.7405
Reference: [5] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [6] Koşan, M. T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009
Reference: [7] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings whose elements are the sum of a tripotent and an element from the Jacobson radical.Can. Math. Bull. 62 (2019), 810-821. Zbl 07128566, MR 4028489, 10.4153/S0008439519000092
Reference: [8] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings with $x^n-x$ nilpotent.J. Algebra Appl. 19 (2020), Article ID 2050065, 14 pages. Zbl 1457.16036, MR 4098929, 10.1142/S0219498820500656
Reference: [9] Ying, Z., Koşan, M. T., Zhou, Y.: Rings in which every element is a sum of two tripotents.Can. Math. Bull. 59 (2016), 661-672. Zbl 1373.16067, MR 3563747, 10.4153/CMB-2016-009-0
Reference: [10] Zhou, Y.: Rings in which elements are sums of nilpotents, idempotents and tripotents.J. Algebra Appl. 17 (2018), Article ID 1850009, 7 pages. Zbl 1415.16034, MR 3741066, 10.1142/S0219498818500093
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo