Previous |  Up |  Next

Article

Title: Truncations of Gauss' square exponent theorem (English)
Author: Liu, Ji-Cai
Author: Zhao, Shan-Shan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1183-1189
Summary lang: English
.
Category: math
.
Summary: We establish two truncations of Gauss' square exponent theorem and a finite extension of Euler's identity. For instance, we prove that for any positive integer $n$, $$ \sum _{k=0}^n(-1)^k \left [ \begin{matrix} 2n-k\\ k \end{matrix} \right ] (q;q^2)_{n-k}q^{{k+1\choose 2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, $$ where $$ \left [ \begin{matrix} n\\ m\end{matrix} \right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \text {and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). $$ (English)
Keyword: Gauss' identity
Keyword: $q$-binomial coefficient
Keyword: $q$-binomial theorem
MSC: 11B65
MSC: 33D15
idZBL: Zbl 07655793
idMR: MR4517606
DOI: 10.21136/CMJ.2022.0429-21
.
Date available: 2022-11-28T11:43:05Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151140
.
Reference: [1] Andrews, G. E.: The Theory of Partitions.Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Zbl 0996.11002, MR 1634067, 10.1017/CBO9780511608650
Reference: [2] Andrews, G. E., Merca, M.: The truncated pentagonal number theorem.J. Comb. Theory, Ser. A 119 (2012), 1639-1643. Zbl 1246.05014, MR 2946378, 10.1016/j.jcta.2012.05.001
Reference: [3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions.J. Comb. Theory, Ser. A 100 (2002), 61-93. Zbl 1016.05003, MR 1932070, 10.1006/jcta.2002.3281
Reference: [4] Chern, S.: Note on the truncated generalizations of Gauss's square exponent theorem.Rocky Mt. J. Math. 48 (2018), 2211-2222. Zbl 1454.11044, MR 3892131, 10.1216/RMJ-2018-48-7-2211
Reference: [5] Chu, W., Claudio, L. Di: Classical Partition Identities and Basic Hypergeometric Series.Quadermi di Matematica 6. Universita degli Studi di Lecce, Lecce (2004). Zbl 1275.11133
Reference: [6] Gu, C.-Y., Guo, V. J. W.: $q$-analogues of two supercongruences of Z.-W. Sun.Czech. Math. J. 70 (2020), 757-765. Zbl 07250687, MR 4151703, 10.21136/CMJ.2020.0516-18
Reference: [7] Guo, V. J. W., Zeng, J.: Multiple extensions of a finite Euler's pentagonal number theorem and the Lucas formulas.Discrete Math. 308 (2008), 4069-4078. Zbl 1156.05003, MR 2427740, 10.1016/j.disc.2007.07.106
Reference: [8] Guo, V. J. W., Zeng, J.: Two truncated identities of Gauss.J. Comb. Theory, Ser. A 120 (2013), 700-707. Zbl 1259.05020, MR 3007145, 10.1016/j.jcta.2012.12.004
Reference: [9] Ismail, M. E. H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric sums.Constr. Approx. 15 (1999), 69-81. Zbl 0924.42004, MR 1660081, 10.1007/s003659900097
Reference: [10] Liu, J.-C.: Some finite generalizations of Euler's pentagonal number theorem.Czech. Math. J. 67 (2017), 525-531. Zbl 1458.05025, MR 3661057, 10.21136/CMJ.2017.0063-16
Reference: [11] Liu, J.-C.: Some finite generalizations of Gauss's square exponent identity.Rocky Mt. J. Math. 47 (2017), 2723-2730. Zbl 1434.11055, MR 3760315, 10.1216/RMJ-2017-47-8-2723
Reference: [12] Liu, J.-C., Huang, Z.-Y.: A truncated identity of Euler and related $q$-congruences.Bull. Aust. Math. Soc. 102 (2020), 353-359. Zbl 1453.05013, MR 4176678, 10.1017/S0004972720000301
Reference: [13] Mao, R.: Proofs of two conjectures on truncated series.J. Comb. Theory, Ser. A 130 (2015), 15-25. Zbl 1316.11092, MR 3280682, 10.1016/j.jcta.2014.10.004
Reference: [14] Shanks, D.: A short proof of an identity of Euler.Proc. Am. Math. Soc. 2 (1951), 747-749. Zbl 0044.28403, MR 0043808, 10.1090/S0002-9939-1951-0043808-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo