Previous |  Up |  Next

Article

Title: Topological entropy and differential equations (English)
Author: Andres, Jan
Author: Ludvík, Pavel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 3-10
Summary lang: English
.
Category: math
.
Summary: On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping. (English)
Keyword: topological entropy
Keyword: impulsive differential equations
Keyword: multivalued impulses
Keyword: topological chaos
MSC: 34A37
MSC: 34C28
MSC: 37B40
MSC: 47H04
idZBL: Zbl 07675569
idMR: MR4563011
DOI: 10.5817/AM2023-1-3
.
Date available: 2023-02-22T14:19:00Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151545
.
Reference: [1] Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy.Trans. Amer. Math. Soc. 114 (1965), 309–319. 10.1090/S0002-9947-1965-0175106-9
Reference: [2] Andres, J.: Topological entropy for impulsive differential equations.Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 68, 1–15, Corrigendum to "Topological entropy for impulsive differential equations". Electron. J. Qual. Theory Differ. Equ., (2021) Paper No. 19, 1-3. MR 4240274, 10.14232/ejqtde.2020.1.68
Reference: [3] Andres, J.: Chaos for differential equations with multivalued impulses.Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 7, Paper No. 2150113, 16. MR 4274346
Reference: [4] Andres, J.: Topological chaos for differential inclusions with multivalued impulses on tori.Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 15, Paper No. 2150237, 11. MR 4348467
Reference: [5] Andres, J.: Parametric topological entropy and differential equations with time-dependent impulses.J. Differential Equations 317 (2022), 365–386. MR 4381660, 10.1016/j.jde.2022.02.008
Reference: [6] Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems.Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003. MR 1998968
Reference: [7] Andres, J., Jezierski, J.: Ivanov’s Theorem for Admissible Pairs Applicable to Impulsive Differential Equations and Inclusions on Tori.Mathematics 8 (2020), no. 9. 10.3390/math8091602
Reference: [8] Andres, J., Ludvík, P.: Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition.Chaos Solitons Fractals 156 (2022), Paper No. 111800, 11. MR 4364785, 10.1016/j.chaos.2022.111800
Reference: [9] Anikushin, M.M., Raĭtmann, F.: Development of the concept of topological entropy for systems with multidimensional time.Differ. Uravn. Protsessy Upr. 52 (2016), no. 4, 14–41. MR 3593031
Reference: [10] Bowen, R.: Entropy for group endomorphisms and homogeneous spaces.Trans. Amer. Math. Soc. 153 (1971), 401–414. 10.1090/S0002-9947-1971-0274707-X
Reference: [11] Cánovas, J. S., Rodríguez, J.M.: Topological entropy of maps on the real line.Topology Appl. 153 (2005), no. 5-6, 735–746. MR 2201485, 10.1016/j.topol.2005.01.006
Reference: [12] Hoock, A.-M.: Topological and invariance entropy for infinite-dimensional linear systems.J. Dyn. Control Syst. 20 (2014), no. 1, 19–31. MR 3152112
Reference: [13] Jaque, N., San Martín, B.: Topological entropy and metric entropy for regular impulsive semiflows.2019, arXiv: 1909.09897. MR 3912693
Reference: [14] Jaque, N., San Martín, B.: Topological entropy for discontinuous semiflows.J. Differential Equations 266 (2019), no. 6, 3580–3600. MR 3912693, 10.1016/j.jde.2018.09.013
Reference: [15] Jiang, B.J.: Nielsen theory for periodic orbits and applications to dynamical systems.Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 183–202.
Reference: [16] Kawan, Ch., Matveev, A.S., Pogromsky, A.Yu.: Remote state estimation problem: towards the data-rate limit along the avenue of the second Lyapunov method.Automatica J. IFAC 125(4) (2021), 1–12. MR 4200513, 10.1016/j.automatica.2020.109467
Reference: [17] Kelly, J.P., Tennant, T.: Topological entropy of set-valued functions.Houston J. Math. 43 (2017), no. 1, 263–282. MR 3647945
Reference: [18] Krasnoselskiĭ, M.A.: The operator of translation along the trajectories of differential equations.American Mathematical Society, Providence, R.I., 1968.
Reference: [19] Matsuoka, T.: The number and linking of periodic solutions of periodic systems.Invent. Math. 70 (1982/83), no. 3, 319–340. 10.1007/BF01391795
Reference: [20] Matsuoka, T.: The number and linking of periodic solutions of nondissipative systems.J. Differential Equations 76 (1988), no. 1, 190–201. 10.1016/0022-0396(88)90069-1
Reference: [21] Pogromsky, A.Yu., Matveev, A.S.: Estimation of topological entropy via the direct Lyapunov method.Nonlinearity 24 (2011), no. 7, 1937–1959. MR 2805587, 10.1088/0951-7715/24/7/002
Reference: [22] Shiraiwa, K.: A generalization of the Levinson-Massera’s equalities.Nagoya Math. J. 67 (1977), 121–138. 10.1017/S0027763000022571
Reference: [23] Tien, L., Nhien, L.: On the Topological Entropy of Nonautonomous Differential Equations.Journal of Applied Mathematics and Physics 07 (2019), 418–429. 10.4236/jamp.2019.72032
Reference: [24] Vetokhin, A.N.: Topological entropy of a diagonalizable linear system of differential equations..Int. Workshop QUALITDE-2020 (December 19-21, 2020) (Tbilisi, Georgia), 2021.
Reference: [25] Walters, P.: An introduction to ergodic theory.Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982.
Reference: [26] Wang, Z., Ma, J., Chen, Z., Zhang, Q.: A new chaotic system with positive topological entropy.Entropy 17 (2015), no. 8, 5561–5579. MR 3393999
Reference: [27] Wójcik, K.: Relative Nielsen numbers, braids and periodic segments.Adv. Nonlinear Stud. 17 (2017), no. 3, 527–550. MR 3667058, 10.1515/ans-2016-6021
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_2.pdf 437.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo