Previous |  Up |  Next

Article

Title: General exact solvability conditions for the initial value problems for linear fractional functional differential equations (English)
Author: Dilna, Natalia
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 11-19
Summary lang: English
.
Category: math
.
Summary: Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied. (English)
Keyword: fractional order functional differential equations
Keyword: Caputo derivative
Keyword: normal and reproducing cone
Keyword: unique solvability
MSC: 26A33
MSC: 34A08
MSC: 34B15
idZBL: Zbl 07675570
idMR: MR4563012
DOI: 10.5817/AM2023-1-11
.
Date available: 2023-02-22T14:20:28Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151546
.
Reference: [1] Aphithana, A., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness of symmetric solutions for fractional differential equations with multi-point fractional integral conditions.Bound. Value Probl. 2015 (68) (2015), 14 pp., https://doi.org/10.1186/s13661-015-0329-1. MR 3338722, 10.1186/s13661-015-0329-1
Reference: [2] Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type.Springer, 2010. Zbl 1215.34001, MR 2680847
Reference: [3] Dilna, N.: Exact solvability conditions for the model with a discrete memory effect.International Conference on Mathematical Analysis and Applications in Science and Engineering, Book of Extended Abstracts, 2022, 405–407 pp.
Reference: [4] Dilna, N., Fečkan, M.: Exact solvability conditions for the non-local initial value problem for systems of linear fractional functional differential equations.Mathematics 10 (10) (2022), 1759, https://doi.org/10.3390/math10101759. MR 4563012, 10.3390/math10101759
Reference: [5] Dilna, N., Gromyak, M., Leshchuk, S.: Unique solvability of the boundary value problems for nonlinear fractional functional differential equations.J. Math. Sci. 265 (2022), 577–588, https://doi.org/10.1007/s10958-022-06072-8. MR 4518887, 10.1007/s10958-022-06072-8
Reference: [6] Fečkan, M., Marynets, K.: Approximation approach to periodic BVP for fractional differential systems.The European Physical Journal Special Topics 226 (2017), 3681–3692, https://doi.org/10.1140/epjst/e2018-00017-9. 10.1140/epjst/e2018-00017-9
Reference: [7] Fečkan, M., Wang, J.R., Pospíšil, M.: Fractional-Order Equations and Inclusions.1st. ed., Walter de Gruyter GmbH, Berlin, Boston, 2017.
Reference: [8] Gautam, G.R., Dabas, J.: A study on existence of solutions for fractional functional differential equations.Collect. Math 69 (2018), 25–37. MR 3742978, 10.1007/s13348-016-0189-8
Reference: [9] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations.Elsevier B.P., 2006. Zbl 1092.45003, MR 2218073
Reference: [10] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional-differential equations.Nonlinear Oscil. 11 (3) (2008), 365–386. MR 2512754, 10.1007/s11072-009-0038-8
Reference: [11] Patade, J., Bhalekar, S.: Analytical solution of pantograph equation with incommensurate delay.Phys. Sci. Rev. Inform. 9 (2017), 20165103 https://doi.org/10.1515/psr-2016-5103. 10.1515/psr-2016-5103
Reference: [12] Reed, M., Simon, B.: Methods of modern mathematical physics.Acad. Press, New York-London, 1972.
Reference: [13] Rontó, A., Rontó, M.: Successive Approximation Techniques in Non-Linear Boundary Value Problems.Handbook of Differential Equations: Ordinary Differential Equations, Elsevier, New York, 2009, pp. 441–592. MR 2440165
Reference: [14] Šremr, J.: Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators.Math. Bohem. 132 (2007), 263–295. MR 2355659, 10.21136/MB.2007.134126
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_3.pdf 413.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo