Previous |  Up |  Next

Article

Title: Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions (English)
Author: Ficek, Filip
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 31-38
Summary lang: English
.
Category: math
.
Summary: Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials. (English)
Keyword: nonlinear Schrödinger equation
Keyword: stationary solutions
Keyword: supercritical dimensions
Keyword: shooting method
MSC: 34B15
MSC: 34B18
MSC: 35Q55
idZBL: Zbl 07675572
idMR: MR4563014
DOI: 10.5817/AM2023-1-31
.
Date available: 2023-02-22T14:22:21Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151548
.
Reference: [1] Bizoń, P.: Is AdS stable?.Gen. Relativity Gravitation 46 (2014), 14 pp., Art. 1724. MR 3205859, 10.1007/s10714-014-1724-0
Reference: [2] Bizoń, P., Evnin, O., Ficek, F.: A nonrelativistic limit for AdS perturbations.JHEP 12 (113) (2018), 18 pp. MR 3900619
Reference: [3] Bizoń, P., Ficek, F., Pelinovsky, D.E., Sobieszek, S.: Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential.Nonlinear Anal. 210 (2021), 36 pp., Paper No. 112358. MR 4249792
Reference: [4] Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space.J. Differential Equations 63 (2000), 41–56. 10.1006/jdeq.1999.3701
Reference: [5] Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger-Newton model – an ODE approach.Differential Integral Equations 21 (2008), 665–679. MR 2479686
Reference: [6] Clapp, M., Szulkin, A.: Non-variational weakly coupled elliptic systems.Anal. Math. Phys. 12 (2022), 1–19. MR 4396665, 10.1007/s13324-022-00673-x
Reference: [7] Ficek, F.: Schrödinger-Newton-Hooke system in higher dimensions: Stationary states.Phys. Rev. D 103 (2021), 13 pp., Paper No. 104062. MR 4277036, 10.1103/PhysRevD.103.104062
Reference: [8] Gallo, C., Pelinovsky, D.: On the Thomas-Fermi ground state in a harmonic potential.Asymptot. Anal. 73 (2011), 53–96. MR 2841225
Reference: [9] Hastings, P., McLeod, J.B.: Classical Methods in Ordinary Differential Equations With Applications to Boundary Value Problems.AMS Providence, Rhode Island, 2012. MR 2865597
Reference: [10] Li, Y., Ni, W.: Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$.Comm. Partial Differential Equations 18 (1993), 1043–1054. 10.1080/03605309308820960
Reference: [11] Pelinovsky, D.E., Wei, J., Wu, Y.: Positive solutions of the Gross-Pitaevskii equation for energy critical and supercritical nonlinearities.arXiv:2207.10145 [math.AP].
Reference: [12] Selem, F.H.: Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential.Nonlinearity 24 (2011), 1795–1819. MR 2802311, 10.1088/0951-7715/24/6/006
Reference: [13] Selem, F.H., Kikuchi, H.: Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities.J. Math. Anal. Appl. 387 (2012), 746–754. MR 2853141, 10.1016/j.jmaa.2011.09.034
Reference: [14] Selem, F.H., Kikuchi, H., Wei, J.: Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity.Discrete Contin. Dyn. Syst. 33 (2013), 4613–4626. MR 3049094
Reference: [15] Smith, R.A.: Asymptotic stability of $x^{\prime \prime }+a(t)x^{\prime }+x=0$.Q. J. Math. 12 (1961), 123–126.
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_5.pdf 422.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo