Title:
|
A note on the oscillation problems for differential equations with $p(t)$-Laplacian (English) |
Author:
|
Fujimoto, Kōdai |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
39-45 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with the oscillation problems on the nonlinear differential equation $(a(t)|x^{\prime }|^{p(t)-2}x^{\prime })^{\prime }+b(t)|x|^{\lambda -2}x=0$ involving $p(t)$-Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem. (English) |
Keyword:
|
oscillation |
Keyword:
|
$p(t)$-Laplacian |
Keyword:
|
half-linear differential equations |
MSC:
|
34C10 |
MSC:
|
34C15 |
idZBL:
|
Zbl 07675573 |
idMR:
|
MR4563015 |
DOI:
|
10.5817/AM2023-1-39 |
. |
Date available:
|
2023-02-22T14:23:57Z |
Last updated:
|
2023-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151549 |
. |
Reference:
|
[1] Bartušek, M., Fujimoto, K.: Singular solutions of nonlinear differential equations with $p(t)$-Laplacian.J. Differential Equations 269 (2020), 11646–11666. MR 4152220, 10.1016/j.jde.2020.08.046 |
Reference:
|
[2] Berselli, L.C., Breit, D., Diening, L.: Convergence analysis for a finite element approximation of a steady model for electrorheological fluids.Numer. Math. 132 (2016), 657–689. MR 3474486, 10.1007/s00211-015-0735-4 |
Reference:
|
[3] Chanturia, T.A.: On singular solutions of strongly nonlinear systems of ordinary differential equations.Function theoretic methods in differential equations, Res. Notes in Math., no. 8, Pitman, London, 1976, pp. 196–204. |
Reference:
|
[4] Došlá, Z., Fujimoto, K.: Asymptotic behavior of solutions to differential equations with $p(t)$-Laplacian.Commun. Contemp. Math. 24 (2022), 1–22, No. 2150046. MR 4508281, 10.1142/S0219199721500462 |
Reference:
|
[5] Došlá, Z., Marini, M.: On super-linear Emden–Fowler type differential equations.J. Math. Anal. Appl. 416 (2014), 497–510. MR 3188719, 10.1016/j.jmaa.2014.02.052 |
Reference:
|
[6] Došlá, Z., Marini, M.: Monotonicity conditions in oscillation to superlinear differential equations.Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1–13, No. 54. MR 3533264 |
Reference:
|
[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005. MR 2158903 |
Reference:
|
[8] Fujimoto, K.: Power comparison theorem for oscillation problems for second order differential equations with $p(t)$-Laplacian.Acta Math. Hungar. 162 (2020), 333–344. MR 4169028, 10.1007/s10474-020-01034-5 |
Reference:
|
[9] Fujimoto, K., Yamaoka, N.: Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian.J. Math. Anal. Appl. 470 (2019), 1238–1250. MR 3870613, 10.1016/j.jmaa.2018.10.063 |
Reference:
|
[10] Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal. 72 (2010), 4551–4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033 |
Reference:
|
[11] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers Group, Dordrecht, 1993. Zbl 0782.34002 |
Reference:
|
[12] Kitano, M., Kusano, T.: On a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 25 (1995), 321–355. 10.32917/hmj/1206127714 |
Reference:
|
[13] Mehta, B.N., Aris, R.: A note on a form of the Emden-Fowler equation.J. Math. Anal. Appl. 36 (1971), 611–621. 10.1016/0022-247X(71)90043-6 |
Reference:
|
[14] Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials.Mech. Res. Comm. 23 (1996), 401–407. 10.1016/0093-6413(96)00038-9 |
Reference:
|
[15] Şahiner, Y., Zafer, A.: Oscillation of nonlinear elliptic inequalities with $p(x)$-Laplacian.Complex Var. Elliptic Equ. 58 (2013), 537–546. MR 3038745, 10.1080/17476933.2012.686493 |
Reference:
|
[16] Shoukaku, Y.: Oscillation criteria for half-linear differential equations with $p(t)$-Laplacian.Differ. Equ. Appl. 6 (2014), 353–360. MR 3265452 |
Reference:
|
[17] Shoukaku, Y.: Oscillation criteria for nonlinear differential equations with $p(t)$-Laplacian.Math. Bohem. 141 (2016), 71–81. MR 3475138, 10.21136/MB.2016.5 |
Reference:
|
[18] Zhang, Q.: Oscillatory property of solutions for $p(t)$-Laplacian equations.J. Inequal. Appl. 2007 (2007), 1–8, 58548. MR 2335972, 10.1155/2007/58548 |
. |