Previous |  Up |  Next

Article

Title: A note on the oscillation problems for differential equations with $p(t)$-Laplacian (English)
Author: Fujimoto, Kōdai
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 39-45
Summary lang: English
.
Category: math
.
Summary: This paper deals with the oscillation problems on the nonlinear differential equation $(a(t)|x^{\prime }|^{p(t)-2}x^{\prime })^{\prime }+b(t)|x|^{\lambda -2}x=0$ involving $p(t)$-Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem. (English)
Keyword: oscillation
Keyword: $p(t)$-Laplacian
Keyword: half-linear differential equations
MSC: 34C10
MSC: 34C15
idZBL: Zbl 07675573
idMR: MR4563015
DOI: 10.5817/AM2023-1-39
.
Date available: 2023-02-22T14:23:57Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151549
.
Reference: [1] Bartušek, M., Fujimoto, K.: Singular solutions of nonlinear differential equations with $p(t)$-Laplacian.J. Differential Equations 269 (2020), 11646–11666. MR 4152220, 10.1016/j.jde.2020.08.046
Reference: [2] Berselli, L.C., Breit, D., Diening, L.: Convergence analysis for a finite element approximation of a steady model for electrorheological fluids.Numer. Math. 132 (2016), 657–689. MR 3474486, 10.1007/s00211-015-0735-4
Reference: [3] Chanturia, T.A.: On singular solutions of strongly nonlinear systems of ordinary differential equations.Function theoretic methods in differential equations, Res. Notes in Math., no. 8, Pitman, London, 1976, pp. 196–204.
Reference: [4] Došlá, Z., Fujimoto, K.: Asymptotic behavior of solutions to differential equations with $p(t)$-Laplacian.Commun. Contemp. Math. 24 (2022), 1–22, No. 2150046. MR 4508281, 10.1142/S0219199721500462
Reference: [5] Došlá, Z., Marini, M.: On super-linear Emden–Fowler type differential equations.J. Math. Anal. Appl. 416 (2014), 497–510. MR 3188719, 10.1016/j.jmaa.2014.02.052
Reference: [6] Došlá, Z., Marini, M.: Monotonicity conditions in oscillation to superlinear differential equations.Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1–13, No. 54. MR 3533264
Reference: [7] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005. MR 2158903
Reference: [8] Fujimoto, K.: Power comparison theorem for oscillation problems for second order differential equations with $p(t)$-Laplacian.Acta Math. Hungar. 162 (2020), 333–344. MR 4169028, 10.1007/s10474-020-01034-5
Reference: [9] Fujimoto, K., Yamaoka, N.: Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian.J. Math. Anal. Appl. 470 (2019), 1238–1250. MR 3870613, 10.1016/j.jmaa.2018.10.063
Reference: [10] Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal. 72 (2010), 4551–4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [11] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers Group, Dordrecht, 1993. Zbl 0782.34002
Reference: [12] Kitano, M., Kusano, T.: On a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 25 (1995), 321–355. 10.32917/hmj/1206127714
Reference: [13] Mehta, B.N., Aris, R.: A note on a form of the Emden-Fowler equation.J. Math. Anal. Appl. 36 (1971), 611–621. 10.1016/0022-247X(71)90043-6
Reference: [14] Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials.Mech. Res. Comm. 23 (1996), 401–407. 10.1016/0093-6413(96)00038-9
Reference: [15] Şahiner, Y., Zafer, A.: Oscillation of nonlinear elliptic inequalities with $p(x)$-Laplacian.Complex Var. Elliptic Equ. 58 (2013), 537–546. MR 3038745, 10.1080/17476933.2012.686493
Reference: [16] Shoukaku, Y.: Oscillation criteria for half-linear differential equations with $p(t)$-Laplacian.Differ. Equ. Appl. 6 (2014), 353–360. MR 3265452
Reference: [17] Shoukaku, Y.: Oscillation criteria for nonlinear differential equations with $p(t)$-Laplacian.Math. Bohem. 141 (2016), 71–81. MR 3475138, 10.21136/MB.2016.5
Reference: [18] Zhang, Q.: Oscillatory property of solutions for $p(t)$-Laplacian equations.J. Inequal. Appl. 2007 (2007), 1–8, 58548. MR 2335972, 10.1155/2007/58548
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_6.pdf 432.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo