Previous |  Up |  Next

Article

Title: Delay-dependent stability conditions for fundamental characteristic functions (English)
Author: Matsunaga, Hideaki
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 77-84
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the investigation on the stability for two characteristic functions $f_1(z) = z^2+pe^{-z\tau }+q$ and $f_2(z) = z^2+pz e^{-z\tau }+q$, where $p$ and $q$ are real numbers and $\tau >0$. The obtained theorems describe the explicit stability dependence on the changing delay $\tau $. Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained. (English)
Keyword: characteristic equation
Keyword: delay
Keyword: stability switch
MSC: 34K20
MSC: 34K25
idZBL: Zbl 07675576
idMR: MR4563018
DOI: 10.5817/AM2023-1-77
.
Date available: 2023-02-22T14:28:24Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151552
.
Reference: [1] Čermák, J., Kisela, T.: Stabilization and destabilization of fractional oscillators via a delayed feedback control.Commun. Nonlinear Sci. Numer. Simul. 117 (2023), 16 pp., Paper No. 106960. MR 4505440, 10.1016/j.cnsns.2022.106960
Reference: [2] Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches.J. Math. Anal. Appl. 86 (1982), 592–627. 10.1016/0022-247X(82)90243-8
Reference: [3] Freedman, H.I., Kuang, Y.: Stability switches in linear scalar neutral delay equations.Funkcial. Ekvac. 34 (1991), 187–209.
Reference: [4] Hata, Y., Matsunaga, H.: Delay-dependent stability switches in a delay differential system.submitted for publication.
Reference: [5] Hsu, C.S., Bhatt, S.J.: Stability charts for second-order dynamical systems with time lag.J. Appl. Mech. 33 (1966), 119–124. 10.1115/1.3624968
Reference: [6] Matsunaga, H.: Stability switches in a system of linear differential equations with diagonal delay.Appl. Math. Comput. 212 (2009), 145–152. MR 2519266, 10.1016/j.amc.2009.02.010
Reference: [7] Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions.Longman Scientific & Technical, New York, 1989.
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_9.pdf 532.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo