Previous |  Up |  Next

Article

Title: Approximation of limit cycle of differential systems with variable coefficients (English)
Author: Onitsuka, Masakazu
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 85-97
Summary lang: English
.
Category: math
.
Summary: The behavior of the approximate solutions of two-dimensional nonlinear differential systems with variable coefficients is considered. Using a property of the approximate solution, so called conditional Ulam stability of a generalized logistic equation, the behavior of the approximate solution of the system is investigated. The obtained result explicitly presents the error between the limit cycle and its approximation. Some examples are presented with numerical simulations. (English)
Keyword: approximate solution
Keyword: variable coefficients
Keyword: generalized logistic equation
Keyword: conditional Ulam stability
Keyword: limit cycle
MSC: 34A12
MSC: 34C05
MSC: 34C07
MSC: 34D10
MSC: 39A30
idZBL: Zbl 07675577
idMR: MR4563019
DOI: 10.5817/AM2023-1-85
.
Date available: 2023-02-22T14:30:06Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151553
.
Reference: [1] Anderson, D.R., Onitsuka, M.: Hyers-Ulam stability for differential systems with $2\times 2$ constant coefficient matrix.Results Math. 77 (2022), 23, Paper No. 136. MR 4420286, 10.1007/s00025-022-01671-y
Reference: [2] Benterki, R., Jimenez, J., Llibre, J.: Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics.Electron. J. Qual. Theory Differ. Equ. 2021 (2021), 38 pp., Paper No. 69. MR 4389338
Reference: [3] Boukoucha, R.: Limit cycles explicitly given for a class of a differential systems.Nonlinear Stud. 28 (2) (2021), 375–387. MR 4328117
Reference: [4] Castro, L.P., Simões, A.M.: A Hyers-Ulam stability analysis for classes of Bessel equations.Filomat 35 (13) (2021), 4391–4403. MR 4365541, 10.2298/FIL2113391C
Reference: [5] Deepa, S., Bowmiya, S., Ganesh, A., Govindan, V., Park, C., Lee, J.: Mahgoub transform and Hyers-Ulam stability of n-th order linear differential equations.AIMS Math. 7 (4) (2022), 4992–5014. MR 4357984, 10.3934/math.2022278
Reference: [6] Devi, A., Kumar, A.: Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with $p$-Laplacian operator.Chaos Solitons Fractals 156 (2022), 8 pp., Paper No. 111859. MR 4379223
Reference: [7] Diab, Z., Guirao, J.L.G., Vera, J.A.: On the limit cycles for a class of generalized Liénard differential systems.Dyn. Syst. 37 (1) (2022), 1–8. MR 4408073, 10.1080/14689367.2021.1993144
Reference: [8] Fečkan, M., Li, Q., Wang, J.: Existence and Ulam-Hyers stability of positive solutions for a nonlinear model for the Antarctic Circumpolar Current.Monatsh. Math. 197 (3) (2022), 419–434. MR 4389128, 10.1007/s00605-021-01618-5
Reference: [9] Galias, Z., Tucker, W.: The Songling system has exactly four limit cycles.Appl. Math. Comput. 415 (2022), 8 pp., Paper No. 126691. MR 4327335
Reference: [10] Gong, S., Han, M.: An estimate of the number of limit cycles bifurcating from a planar integrable system.Bull. Sci. Math. 176 (2022), 39 pp., Paper No. 103118. MR 4395271
Reference: [11] Huang, J., Li, J.: On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones.Nonlinear Anal. Real World Appl. 66 (2022), 17 pp., Paper No. 103551. MR 4389045
Reference: [12] Jung, S.-M., Ponmana Selvan, A., Murali, R.: Mahgoub transform and Hyers–Ulam stability of first-order linear differential equations.J. Math. Inequal. 15 (3) (2021), 1201–1218. MR 4364669, 10.7153/jmi-2021-15-80
Reference: [13] Kelley, W.G., Peterson, A.C.: The Theory of Differential Equations: Classical and Qualitative.Springer, New York, 2010, Second Edition, Universitext. MR 2640364
Reference: [14] Li, J., Han, M.: Planar integrable nonlinear oscillators having a stable limit cycle.J. Appl. Anal. Comput. 12 (2) (2022), 862–867. MR 4398697
Reference: [15] Nam, Y.W.: Hyers-Ulam stability of loxodromic Möbius difference equation.Appl. Math. Comput. 356 (2019), 119–136. MR 3933980, 10.1016/j.amc.2019.03.033
Reference: [16] Onitsuka, M.: Approximate solutions of generalized logistic equation.submitted.
Reference: [17] Onitsuka, M.: Conditional Ulam stability and its application to the logistic model.Appl. Math. Lett. 122 (2021), 7 pp., Paper No. 107565. MR 4296927
Reference: [18] Onitsuka, M.: Conditional Ulam stability and its application to von Bertalanffy growth model.Math. Biosci. Eng. 19 (3) (2022), 2819–2834. MR 4364436, 10.3934/mbe.2022129
Reference: [19] Onitsuka, M., El-Fassi, Iz.: On approximate solutions of a class of Clairaut’s equations.Appl. Math. Comput. 428 (2022), 13 pp., Paper No. 127205. MR 4421006, 10.1016/j.amc.2022.127205
Reference: [20] Sugie, J., Ishibashi, K.: Limit cycles of a class of Liénard systems derived from state-dependent impulses.Nonlinear Anal. Hybrid Syst. 45 (2022), 16 pp., Paper No. 101188. MR 4399231
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_10.pdf 1.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo